Soal Fungsi Komposisi Quizizz

Soal Fungsi Komposisi Quizizz

Bantu jawab soal quizizz​

Daftar Isi

1. Bantu jawab soal quizizz​


Penjelasan dengan langkah-langkah:

∫ (4x^3 - 6x^2 + 5x - 6) dx

= 4/4 x^4 - 6/3 x^3 + 5/2 x^2 - 6x + C

= x^4 - 2x^3 + 5/2 x^2 - 6x + C


2. soal fungsi komposisi


a) (gof) (x) = x² + 3x - 11
    g(f(x)) = x² + 3x - 11
    g(x² + 3x - 5) = x² + 3x - 11
    misal: x² + 3x - 5 = a
              x² + 3x - 5 - 6 = a - 6
               x² + 3x - 11 = a - 6
   g(a) = a - 6
   g(x) = x - 6

b) (gof)(x) = 3x² - 6x + 7
     g(f(x)) = 3x² - 6x + 7
     g(x² - 2x + 1) = 3x² - 6x + 7
     misal: x² - 2x + 1 = m -- kedua ruas dikali 3
               3x² - 6x + 2 = 2m
               3x² - 6x + 2 + 5 = 2m + 5
               3x² - 6x + 7 = 2m + 5
   g(m) = 2m + 5
   g(x) = 2x + 5

semoga membantu ya :)
            

3. QUIZIZZSoal ada dilampiran Pakai cara ​


Rumus Volume tabung= πr2t.

Sekarang dimasukkan...

22/7 x 7 x7 x 20= 3080 cm³

semoga membantu

Penjelasan dengan langkah-langkah:

Diketahui :

Sebuah Tabung dengan ;

Jari - Jari : 7 cm

tinggi :20 cm

Ditanya ;

Volume ?

Jawab :

[tex] \sf{}v = \pi. {r}^{2} .t[/tex]

[tex] \sf{}v = \frac{22}{7} \times {7}^{2} \times 20[/tex]

[tex] \sf{}v = \frac{22}{7} \times (7 \times 7) \times 20[/tex]

[tex] \sf{}v = \frac{22}{7} \times 49 \times 20[/tex]

[tex] \sf{}v = \frac{22}{ \cancel7} \times { \cancel{49}}^{7} \times 20[/tex]

[tex] \sf{}v = 22 \times 7 \times 20[/tex]

[tex] \sf{}v = 3.080 {cm}^{3} [/tex]


4. berikan contoh soal dari fungsi komposisi


Diketahui :
f(x) = 5x + 2
g(x) = 8x + 10
berapakah nilai dari :
1) fog(x)
2) gof(x)

5. apa fungsi dan manfaat aplikasi Quizizz??plis tlong jwab​


Jawaban:

aplikasi kuis berfungsi sebagai alat belajr yang baik karna dapat memberikan pertanyaan pertanyaan yang bermanfaat, sehingga dapat melatih saraf otak agar lebih sering berfikir


6. tolong jawab soal komposisi fungsi hari ini dong tolong lagi butuh


semoga jawabannya benar


7. Sebutkan 3 Hal Disekolah! (Beserta Artinya!) Dan Contoh Ditulis Ya... Quizizz Soal.​


Jawaban:

1.ketemu temen

2.ketemu guru

3.main bareng sama temen

Penjelasan:

dah itu aja


8. Tolong buatkan contoh soal fungsi komposisi yang paling mudah


Diketahui :
F(x) = 5x-4
G(x) = 2x+12
Tentukan :
a) (FoG) (x)
b) (GoF) (x)

9. SOAL QUIZIZZ TOLONG DIJAWAB SITUASI GENTING​


segitiga PQR siku di Q
maka PR merupakan sisi miring
jika PQ = 4 dan PR = 5
maka QR = akar dari ( 5^2 - 4^2)
QR = akar dari (25-16)
QR = akar dari 9
maka QR = 3

10. contoh soal dan jawaban fungsi komposisi​


Pendahuluan

Fungsi komposisi adalah penggabungan dua atau lebih fungsi sehingga terbentuk suatu fungsi baru. Fungsi komposisi dituliskan dengan "(f o g)(x)" dimana "o" dibaca bundaran. Jadi, "(f o g)(x)" dibaca f bundaran g.

[tex]~[/tex]

Sifat sifat fungsi komposisi:

Tidak berlaku sifat komutatif

(f o g)(x) ≠ (g o f)(x)

Berlaku sifat asosiatif

(f o (g o h))(x) = ((f o g) o h)(x)

Jika fungsi identitas

(f o I)(x) = (I o f)(x) = f(x)

[tex]~[/tex]

Pembahasan Soal

Contoh soal dan jawaban fungsi komposisi:

[tex]~[/tex]

Soal:

Diketahui f(x) = 3x + 2 dan g(x) = -x. Tentukan (f o g)(x)!

[tex]~[/tex]

Jawaban:

f(x) = 3x + 2

g(x) = -x

(f o g)(x) = ?

[tex]~[/tex]

(f o g)(x)

f(g(x))

3(-x) + 2

-3x + 2

2 - 3x

[tex]~[/tex]

Pelajari Lebih LanjutContoh soal fungsi komposisi: brainly.co.id/tugas/8221974Contoh soal fungsi komposisi: brainly.co.id/tugas/10462734Contoh soal fungsi komposisi: brainly.co.id/tugas/12114752

[tex]~[/tex]

Detail JawabanMapel: MatematikaKelas: 10 (1 SMA)Materi: FungsiKode Soal: 2Kode Kategorisasi: 10.2.3

11. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?


Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51

12. ada yang tau gakalo hasil quizizz di rekap nilai quizizz gurunya...ketika kita sudah mengerjakan quizizz bakal ketauan ga jam berapa selesai ngerjain quizizz nya di quizizz guruny?​


Jawaban:

klo masalah hal itu pada umumnya guru akan mengetahui nya

Penjelasan:

semoga membantu


13. tugas mtkbuatlah 5 soal fungsi komposisi​


Jawab:

Penjelasan dengan langkah-langkah:

2017

1.    Diketahui jika adalah invers dari f, maka = ...

a.    2/3 (1 + x)

b.    2/3 (1 – x)

c.    3/2 (1 + x)

d.    – 3/2 (x – 1)

e.    – 2/3 (x + 1)

PEMBAHASAN:

Ingat rumus ini ya:  jika , maka:

JAWABAN: A

2.    Diketahui fungsi f(x) = 2x + 3 dan g(x) = x2 – 2x + 4. Komposisi fungsi (g o f)(x) adalah ...

PEMBAHASAN:

(g o f)(x)   = g(f(x))

               = g(2x + 3)

         

JAWABAN: C

3.    Diketahui f(x) = x + 4 dan g(x) = 2x maka = ...

a.    2x + 8

b.    2x + 4

c.    ½ x – 8

d.    ½ x – 4

e.    ½ x – 2

PEMBAHASAN:

(f o g)(x) = f(g(x))

             = f(2x)

             = 2x + 4

Kita cari invers dari (f o g)(x) yaitu:

(f o g)(x) = 2x + 4

y = 2x + 4

2x = y – 4

x = (y-4)/2

x = ½ y – 2

maka, = ½ x – 2

JAWABAN: E

4.    Fungsi f ditentukan , x ≠ 3, jika invers dari f maka (x + 1) = ...

PEMBAHASAN:

Ingat lagi ya, jika

Sehingga:

JAWABAN: D

5.    Diketahui , dan adalah invers dari f, maka (x) = ...

PEMBAHASAN:

Kita gunakan rumus: jika

JAWABAN: B

6.    Diketahui f(x) = 2x + 5 dan , x ≠ -5 maka (f o g)(x) = ...

PEMBAHASAN:

JAWABAN: D

7.    Invers dari fungsi , x ≠ 4/3 adalah(x) = ...

 

PEMBAHASAN:

Rumusnya: jika

JAWABAN: A

8.    Diketahui fungsi f(x) = 3x – 1 dan . Nilai dari komposisi fungsi (g o f)(1) = ...

a.    7

b.    9

c.    11

d.    14

e.    17

PEMBAHASAN:

(g o f)(x)     = g(f(x))

                 = g(3x – 1)

           

JAWABAN: C

9.    Jika dan f-1 invers dari f, maka (x) = -4 untuk nilai x sama dengan ...

a.    -2

b.    2

c.    – ½

d.    -3

e.    – 1/3

PEMBAHASAN:

Kita pakai rumus: jika

    -2x + 1 = -4x

    -2x + 4x= -1

    2x = -1

    x = - ½

JAWABAN: C

10.    Jika g(x) = x + 1 dan maka f(x) = ...

PEMBAHASAN:

JAWABAN: B

11.    Diketahui , x ≠ 5/6 dan fungsi invers dari f(x) adalah (x). Nilai dari (2) = ...

a.    14/3

b.    17/14

c.    6/21

d.    – 17/14

e.    – 14/3

PEMBAHASAN:

Kita pakai rumus: jika

JAWABAN: C

12.    Diketahui:

, dengan x ≥ -4 dan x ∊ R. Fungsi komposisi (g o f)(x) adalah ...

a.    2x – 4

b.    x – 2

c.    x + 2

d.    x

e.    2x

PEMBAHASAN:

JAWABAN: D

13.    Jika dan adalah invers dari f, maka (x + 1) = ...

PEMBAHASAN:

Kita pakai rumus: jika

JAWABAN: A

14.    Diketahui f : R --> R dan g : R --> R, didefinisikan dengan dan g(x) = 2 sin x. Nilai (f o g)(- ½ π) adalah ...

a.    -4

b.    2

c.    3

d.    6

e.    12

PEMBAHASAN:

(f o g)(x) = f(g(x))

              = f(2 sin x)

       

JAWABAN: A

15.    Suatu pemetaan f : R --> R, g : R --> R dengan dan g(x) = 2x + 3 maka f(x) = ...

PEMBAHASAN:

JAWABAN: A

16.    Diketahui f : x --> x + 2 dan h : x --> x^2 – 2. Jika maka g(x) = ...

a.    2x + 3

b.    2x + 6

c.    2x + 9

d.    x + 5

e.    x – 3

PEMBAHASAN:

JAWABAN: B

17.    Jika dan g(x) = 2x + 4 maka (x) = ...

PEMBAHASAN:

Untuk mencari inversnya, kita gunakan rumus:

JAWABAN: E

18.    Jika maka fungsi g adalah g(x) = ...

a.    2x – 1

b.    2x – 3

c.    4x – 5

d.    4x – 3

e.    5x – 4

PEMBAHASAN:

    g(x) + 1 = 4(x – 1)

    g(x) = 4x – 4 – 1

    g(x) = 4x – 5

JAWABAN: C

19.    Fungsi f : R--> R dan g : R --> R ditentukan oleh f(x) = 2x + 5 dan g(x) = x + 2 maka memetakan x ke ...

PEMBAHASAN:

(f o g)(x) = f(g(x))

             = f(x + 2)

             = 2 (x + 2) + 5

             = 2x + 4 + 5

             = 2x + 9

(f o g)(x) = 2x + 9

y = 2x + 9

2x = y – 9

x = (y - 9)/2

= (x - 9)/2

JAWABAN: E

20.    Jika f(x) = √x + 3 maka (x) = ...

PEMBAHASAN:

     f(x) = √x + 3

    y = √x + 3

    y – 3 = √x

JAWABAN: C

21.    Diketahui untuk setiap bilangan real x ≠ 0. Jika g : R --> R adalah suatu fungsi sehingga (g o f)(x) = g(f(x)) = 2x + 1 maka fungsi invers g-1(x) = ...

PEMBAHASAN:

Maka:

JAWABAN: D

22.    Diketahui , x ≠ - ¼ . Jika adalah invers f, maka(x – 2) = ...

PEMBAHASAN:

Kita pakai rumus: jika

JAWABAN: A

23.    Invers dari adalah ...

PEMBAHASAN:

JAWABAN: D

24.    Jika , maka daerah asal dari (g o f)(x) adalah ...

a.    x ≥ 8

b.    -8 ≤ x ≤ 8

c.    x ≥ 5

d.    -5 ≤ x ≤ 5

e.    5 ≤ x ≤ 8 atau x > 8

PEMBAHASAN:

Sehingga daerah asal dari (g o f)(x) adalah:

Dari (i) dan (ii) diperoleh:

5 ≤ x < 8 atau x > 8

JAWABAN: E

25.    Diberikan fungsi f dan g dengan f(x) = 2x + 1 dan , x ≠ 1 maka invers dari fungsi g adalah g-1(x) = ...


14. penyelesaian dari soal berikut: materi komposisi fungsi kelas X ​


Hanya 1 soal saja ya

fog(x) = 2(x+4)+1 = 2x + 9
fog(4) = 2(4) + 9 = 17

gof(x) = 2x+5
gof(-1) = -2 + 5 = 3

Wassalamu'alaikum Wr.Wb
Guru Matematika IPA Terpadu
Les Private Online Master

ini yaaa maaf kalo gajelas atau burem hehehe


15. contoh 2 buah soal tentang fungsi komposisi?


Diketahui fungsi F(0)= 3 F(1)= -2 F(2)= 4 F(3)= -2 Dan nilai (fog)(x) dari (fog)(u)=0 (fog)(v)=1 (fog)(w)=3 (fog)(a)=2 Tentukan g(x) untuk x=u,v,w,aIni soal sama jawaban, tapi invers

16. soal fungsi komposisi dan fungsi invers


ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers

17. Buatkan 10 soal matematika komposisi fungsi serta cara penyelesaiannya


f(x)
f(1)
f(2)
f(3)
f(4)
f(x)x f(x)
f(4)
f(6)

18. Soal komposisi 3 fungsi


.............................

19. Kaa bantu jawab sekarang soal matematika fungsi komposisi


Penjelasan dengan langkah-langkah:

Dik: f(x) = -2x + 4

g(x) = x^2 - 3x

Dit : f ° g(x) = ?

Jawab:

[tex]f \circ \: g(x) = f(g(x)) \\ = - 2 \cdot \: g(x) + 4 \\ \: \: \: \: = - 2( {x}^{2} - 3x) + 4 \\ = - 2 {x}^{2} + 6x + 4[/tex]

Semoga bermanfaat.


20. tolong dibantu dengan cara untuk soal fungsi komposisi​


Jawab:

Penjelasan dengan langkah-langkah:


21. soal fungsi komposisibantu jawab pakai cara​


Jawaban:

[tex](fog)(x) = f(g(x))= 2( \frac{x + 4}{x - 1} ) - 5 \\ f(g(2)) = 2( \frac{2 + 4}{2 - 1} ) - 5 \\ = 2 (\frac{6}{1} ) - 5 \\ = 2(6) - 5 \\ = 12 - 5 = 7[/tex]


22. soal latihan materi: fungsi invers dan fungsi komposisi, tolong bantu :)


Jawab:

Penjelasan dengan langkah-langkah:

soal 1a

f(x)=  2x + 5

2x=  f(x) - 5

x=  ¹/₂ [ f(x) - 5 ]

f⁻¹(x)=  ¹/₂ (x - 5 )

soal 2a

f(x) =  x² - 4x + 2

x²- 4x =  f(x) - 2

(x - 2)² =  f(x) -2 + 4

(x - 2)² =  f(x) + 2

[tex]\sf (x-2) = \pm \sqrt{f(x) + 2}\\\\x = 2 \pm \sqrt{f(x) + 2}\\\\f^{-1}(x) = 2 \pm \sqrt{x+2}[/tex]

soal 2a

fog(x) =  f{ g(x)}

= f {2x+5}

= 2x+5 - 3

(fog)(x) = 2x + 2

gof(x) = g{ f(x)}

= g { f(x)}

= g {x- 3}

= 2 (x-3)  + 5

=2x -6 + 5

(gof)(x) = 2x - 1

soal2b

fog(x) = 2x+ 2

(fog)⁻¹(x)= ¹/₂ ( x- 2)

gof(x)= 2x- 1

(gof)⁻¹(x)=   ¹/₂ (x + 1)


23. contoh soal cerita dan pembahasannya tentang fungsi komposisi


ada dilampiran yah, liat aja

24. latihan soal matematika fungsi komposisi


1. f(x)= x - 4
f(x²) - { f(x)}² +3.f(x) =
= x²-4 - (x-4)² + 3(x-4)
= x² - 4 -(x² -8x +16) + 3x -12
= x² -4 - x² + 8x - 16 + 3x - 12
= 11 x - 32
untuk x = -2 --> 11(-2) - 32 = - 54 

2. g(x)  = 2x+ 3
g⁻¹(x) = (x - 3)/2
fog(x) = 12x² + 32x + 26
f(x) = fogog⁻¹ = 12{(x-3)/2}² + 32(x -3)/2 + 26
f(x) = 12 { 1/4 (x² -6x + 9)} + 16(x-3) + 26
f(x) = 3x² - 18x + 27 + 16x - 48 + 26
f(x)= 3x² - 2x + 5

3> f(x) = 2x² - 3x + 1
g(x)  = x-1 
fog(x) = 0
2(x-1)² -3(x-1) + 1 = 0
2(x²-2x +1) - 3x + 3 + 1= 0
2x² - 4x + 2 - 3x + 3 + 1 =0
2x² - 7x + 6 =0
(2x - 3)(x- 2) = 0
x = 3/2  atau x = 2

25. sebutkan soal essay komposisi 3 fungsi


Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:

f(x) = 3x + 2
g(x) = 2 − x

Tentukan:
a) (f o g)(x)
b) (g o f)(x)

Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x

a) (f o g)(x)

"Masukkan g(x) nya ke f(x)"

sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8

b) (g o f)(x)

"Masukkan f (x) nya ke g (x)"

sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
maaf ya kalau salah

26. Tolong Yang au Tentang Quizizz-! Sekarang Harus Dikumpulkan-!! Pelajaran TIK Tugas kali ini adalah kalian mencari tahu : 1. Apa itu aplikasi quizizz ? 2. Bagaimana cara menggunakan aplikasi quizizz ? 3. Sebutkan manfaat dari aplikasi quizizz


Quizizz merupakan sebuah web tool untuk membuat permainan quiz interaktif untuk digunakan dalam pembelajaran di kelas. Masuk aplikasi quizizz lalu Sign up.Untuk memudahkan, bisa memakai akun Google kamu.Pilihlah Peran kamu, apakah sebagai guru, siswa, orang tua atau lainnya.Lengkapi data kamu.Isikan info Kuis kamu.Lengkapi Modul-modul seperti pertanyaan,Pilih jawaban, dan jawaban yang benar. "Question preview" akan menampilkan soal yang dibuat.tambahkan pertanyaan baru,klik finished kalau sudah selesai. tahap terakhir, pilih tingkatan,subjek atau mata pelajaran. klik finish dan create QuizTampilkan quiz secara langsung atau untuk pekerjaan rumah. setting quiz,dan klik proceed. kirim ke orang lain untuk membuka dan bagikan code nya.Kamu bisa membagikannya ke classroom.

3.dapat dengan mudah di manfaatkan selain media pembelajaran, juga bahan evaluasi pembelajaran.

ada di foto semoga membantu

semangat belajar ^^


27. QUIZIZZAPA YANG DIMAKSUD FISIKANt: Gtw mau bikin soal apa ​


Jawaban:

Fisika adalah sains atau ilmu alam yang mempelajari materi beserta gerak dan perilakunya dalam lingkup ruang dan waktu

terimakasih


28. Soal Dan Jawaban Komposisi Fungsi​


Jawaban:

Fungsi komposisi adalah sebuah operasi pada 2 fungsi atau lebih untuk menghasilkan sebuah fungsi yang baru.

Fungsi komposisi menggunakan notasi ‘o’. Contohnya jika fungsi f(x) dan g(x), maka (f o g) (x) dibaca fungsi f bundaran g yang dikerjakan dengan cara memasukkan fungsi g ke dalam fungsi f.

Penjelasan dengan langkah-langkah:

correct me if im wrong


29. Mohon bantuannya Ini soal mtk tentang fungsi komposisi & invers


Jawaban:

f(x) + g(x) = 2x² + 2x - 3

Penjelasan dengan langkah-langkah:

f(x) = 2x² + x - 5

g(x) = x + 2

f(x) + g(x) = 2x² + x - 5 + x + 2

f(x) + g(x) = 2x² + 2x - 3

semoga jawabannya membantu


30. Quizizz bagi-bagi poin nih jangan ngasal auto reportJawaban dan soal harus lengkap​


Jawaban:

penjelasan terlampir


31. contoh soal tentang fungsi komposisi fungsi dan fungsi linear


semoga bisa membantu

32. berikan contoh soal fungsi komposisi


f(x) = 2x-4 , g(x) = x²+2
(gof)(3)???

33. Mohon bantuannya ya soal mtk tentang komposisi fungsi...


Jawaban:

A.

Penjelasan dengan langkah-langkah:

maaaf kallo salahhhj


34. ada yang tau gakalo hasil quizizz di rekap nilai quizizz gurunya...ketika kita sudah mengerjakan quizizz bakal ketauan ga jam berapa selesai ngerjain quizizz nya di quizizz guruny?​


Jawaban:

kelihatan nya iya karena aku juga gitu pas pake quizizz


35. contoh cerita dalam bentuk soal fungsi komposisi kelas XI


Contoh cerita dalam bentuk soal fungsi komposisi kelas XI
1.sebutkan teknik teknik mengambar gambar dekoratif???
2.berapakah 850 mg=........gr
3.mean dari data : 6,7,y,4,7,8,5,8,6,8,8,6 adalah 6,5.tentukan : a.nilai y        b.mediannya
4.nilai rata rata ulangan mtk sekelompok siswa adalah 63 siswa.jika ditambah 1 orang bagi yang memiliki nilai 80.maka nilai rata rata menjadi 6,4.berapakah banyak siswa pada kelompok semula ?


36. tolong di bantu please! soalnya gak ngerti tentang fungsi komposisi


Quick Tips!

⇒ (f o g) (x) = f(g(x))

⇒ (g o f) (x) = g(f(x))

⇒ (f o f) (x) = f(f(x))

⇒ (g o g) (x) = g(g(x))

===================


f(x) = 2x - 1

g(x) = x + 3


A. (f o g) (x) ⇔ f(g(x))

(f o g) (x) = 2(x + 3) - 1

(f o g) (x) = 2x + 6 - 1

(f o g) (x) = 2x + 5


B. (g o f) (x) ⇔ g(f(x))

(g o f) (x) = (2x - 1) + 3

(g o f) (x) = 2x - 1 + 3

(g o f) (x) = 2x + 2


C. (f o f) (x) ⇔ f(f(x))

(f o f) (x) = 2(2x - 1) - 1

(f o f) (x) = 4x - 2 - 1

(f o f) (x) = 4x - 3


D. (g o g) (x) ⇔ g(g(x))

(g o g) (x) = (x + 3) + 3

(g o g) (x) = x + 6


=========================

Kelas : XI SMA

Mapel : Matematika Wajib

Kategori : Fungsi (Fungsi Komposisi dan Fungsi Invers)

Kode Mapel : 11.2.6


37. membuat 10 soal tentang fungsi komposisi berserta jawaban ya​


Jawaban:

1. Jika f(x) = 3x + 2 dan g(x) = 4x2 . Maka (f o g)(x) dan (g o f)(x) adalah …

Pembahasan

(f o g)(x) = f (g(x))

(f o g)(x) = f (4x2)

(f o g)(x) = 3(4x2) + 2

(f o g)(x) = 12x2 + 2

(g o f)(x) = g(f(x))

(g o f)(x) = 4(3x + 2)2

(g o f)(x) = 4(9x2 + 12x + 4)

(g o f)(x) = 36x2 + 48x + 16

Jadi, (f o g)(x) = 12x2 + 2 dan (g o f)(x) = 36x2 + 48x + 16.

2. Diketahui (f o g)(x) = 2x + 4 dan f(x) =x – 2. Tentukan fungsi g (x)!

Pembahasan

(f o g)(x) = 2x + 4

f(g(x)) = 2x + 4

g(x) – 2 = 2x + 4

g(x) = 2x + 4 + 2

g(x) = 2x + 6

Jadi, fungsi g (x) adalah g(x) = 2x + 6.

3. Tentukan f(x) jika (f o g)(x) = 4x + 6 dan g(x) = 2x + 5.

Pembahasan

(f o g)(x) = 4x + 6

f(g(x)) = 4x + 6

f (2x + 5) = 4x + 6

Misal u = 2x + 5, maka x = ½(u-5), sehingga:

f (2x + 5) = 4x + 6

f (u) = 4(½(u-5)) + 6

f (u) = 2u – 10 + 6

f (u) = 2u – 4

f (x) = 2x – 4

Jadi, fungsi f(x) = 2x – 4.

4. Diberikan f(x) = 2x + 6, carilah fungsi invers dari f(x) !

Pembahasan

f(x) = 2x + 6

y = 2x + 6

2x = y – 6

x = ½y – 3

f-1(x) = ½x – 3

Jadi, fungsi invers dari f(x) adalah f-1(x) = ½x – 3.

5. Jika f(x) = 2x, g(x) = 3x – 1, dan h(x) = x2, maka (f o g o h) (x) adalah …

Pembahasan

(f o g o h) (x) = (f o (g o h) (x))

(f o g o h) (x) = f (g (h(x))

(f o g o h) (x) = f (3(x2) – 1)

(f o g o h) (x) = f (3x2 – 1)

(f o g o h) (x) = 2 (3x2 – 1)

(f o g o h) (x) = 6x2 – 2

Jadi, (f o g o h) (x) = 6x2 – 2.

6. Diketahui f(x) = x + 2 dan g(x) = 2x – 4. Tentukan (g o f)-1 (x) !

Pembahasan

(g o f)-1 (x) = (f-1 o g-1) (x)

(g o f)-1 (x) = (f-1 (g-1(x))

Tentukan fungsi f-1(x):

f(x) = x + 2

y = x + 2

x = y – 2

f-1(x) = x – 2

Tentukan fungsi g-1(x):

g(x) = 2x – 4

y = 2x – 4

2x = y + 4

x = ½y + 2

g-1(x) = ½x + 2

Substitusikan f-1 (x) dan g-1 (x) ke (g o f)-1 (x) :

(g o f)-1 (x) = (f-1 (g-1(x))

(g o f)-1 (x) = f-1 (½x + 2)

(g o f)-1 (x) = (½x + 2) – 2

(g o f)-1 (x) = ½x

Jadi, (g o f)-1 (x) = ½x.

7. Jika (f o g) (x) = x + 4, dan g(x) = x – 2. Maka carilah invers dari fungsi f(x).

Pembahasan

(f o g) (x) = x + 4

f(g(x)) = x + 4

f(x – 2) = x + 4

Misal u = x – 2, maka x = u + 2, sehingga

f(x – 2) = x + 4

f(u) = u + 2 + 4

f(u) = u + 6

f(x) = x + 6

y = x + 6

x = y – 6

f-1(x) = x – 6

Jadi, invers dari fungsi f(x) adalah f-1(x) = x – 6.


38. tolong MM KLS X 2 SOAL SAJA tentang fungsi komposisi​


Jawab:
(1.) f(x) = 7x-5
(2.) f(x) = 2x-1

Penjelasan dengan langkah-langkah:

Sorry lama.

(1.) (f ° g)(x) = 7x+9
g(x) = x + 2
f(x) = ?
f(x+2) = 7x+9
-> x+2 = a, x = a-2
maka
f(a) = 7(a-2)+9
f(a) = 7a-14+9
f(a) = 7a-5
f(x) = 7x-5

(2.) (g°f)(x) = 2x+4
g(x) = x+5
f(x) = ?
(f(x))+5 = 2x+4
f(x) = 2x+4-5
f(x) = 2x-1

<(7o7)>


39. QUIZIZZMencari volume Soal ada dilampiranpakai cara​


> Tabung <

__________

Rumus volume tabung:

[tex](\pi \times r \times r) \times t[/tex]

Dimana:

π = pi (22/7 atau 3,14)r = Jari-jarit = tinggi tabung

---

Diketahui:

r = 7 cmt = 20 cm

Maka, volumenya:

[tex](\pi \times r \times r) \times t \\ \\ = \sf(\frac{22}{7} \times 7 \: cm \times 7 \: cm) \times 20 \: cm \\ = \sf(22 \times 1 \: cm \times 7 \: cm) \times 20 \: cm \\ = \sf(22 \: cm \times 7 \: cm) \times 20 \: cm \\ = \sf 154 \: {cm}^{2} \times 20 \: cm \\ = \sf \red{3.080 \: {cm}^{3}} [/tex]

===

[tex]\huge \color{hotpi}{\underbrace{\textsf{\textbf{ \color{purple}⇣{\red{J}{\color{pink}{A}{\green{W}{\color{blue}{A}{\purple{B}{\color{gold}{A}{\orange{N}{\color{red}{}{\green}{}{\color{silver}{}{ \color{purple}⇣}}}}}}}}}}}}}}[/tex]

Diketahui

Tinggi Tabung : 20 Cm

Radius : 7 Cm

π = 22/7

Ditanya

Volumenya adalah ?

Jawaban

= Volume Tabung

= π × r² × t / π × r × r × t

= 22/7 × 7 × 7 × 20

= 22 × 7 × 20

= 154 × 20

= 3.080 Cm³

Catatan ! π = phi T = Tinggi TabungR = RadiusPhi = 22/7 Atau 3,14

40. Tolong dibantu ya ini soal komposisi fungsi​


[tex]f(x) = \frac{x + 6}{3x - 2} \\ g(x) = 2x + 4 \\ (f \: o \: g)( - 1) = f(g( - 1)) \\ = f(2( - 1) + 4) \\ = f( - 2 + 4) \\ = f(2) \\ = \frac{2 + 6}{3(2) - 2} \\ = \frac{8}{6 - 2} \\ = \frac{8}{4} = 2[/tex]


Video Terkait

Kategori matematika