Bank Soal Fisika Kelas Xii

Bank Soal Fisika Kelas Xii

tolong please soal fisika kelas XII IPA​

Daftar Isi

1. tolong please soal fisika kelas XII IPA​


Jawaban:

6 ohm dan 3 ohm dirangkai paralel, maka diselesaikan dulu secara paralel. kemudian hasilnya diseri dengan 4 ohm.

Penjelasan:


2. Tolong bantu jawab soal fisika kelas XII


Jawaban:

[tex]\displaystyle W=12\,\text{J}[/tex]

Penjelasan:

[tex]\displaystyle \text{diketahui:}\\C_1=4\,\text{F}\\C_2=1\,\text{F}\\C_3=2\,\text{F}\\C_4=3\,\text{F}\\C_5=6\,\text{F}\\V=6\,\text{V}\\\\\text{ditanya:}\\W=?\\\\\text{jawab:}\\C_{45}=\frac{C_4C_5}{C_4+C_5}\\C_{45}=\frac{3\cdot6}{3+6}\\C_{45}=2\,\text{F}\\\\C_{35}=C_3+C_{45}\\C_{35}=2+2\\C_{35}=4\,\text{F}\\\\\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_{35}}+\frac{1}{C_2}\\\frac{1}{C}=\frac{1}{4}+\frac{1}{4}+\frac{1}{1}\\\frac{1}{C}=\frac{3}{2}\\C=\frac23\,\text{F}\\\\W=\frac12CV^2\\W=\frac12\cdot\frac23\cdot6^2\\W=\frac13\cdot36\\\boxed{\boxed{W=12\,\text{J}}}[/tex]


3. Soal Fisika Materi Listrik Statis Kelas XII. ​


Penjelasan:

Medan listrik trmasuk besaran vektor

satuan muatan ubah ke Coulomb

jarak ubah k cm dan cari kuadratnya

spt d lampiran


4. soal mtk kelas xii soal tertera di gambar​


Jawaban:

Warette ikiru koto ga raku ni naru no?

Mata mune ga itaku narukara

Moo nani mo iwanaide yo

Nee, moshimo

Subete wasure raretanara

Nakanaide ikiru koto mo raku ni naru no?

Demo sonna koto dekinaikara

Moo nani mo misenaide yo

Kimi ni dore dake chikadzuite mo

Boku no shinzo wa hitotsudake

Hidoi yo hidoi yo

Moo isso boku no karada o

Kowashite hikisaite sukina yo ni shite yo

Sakende mo kaite mabuta o harashite mo

Mada kimi wa boku no koto o dakishimete hanasanai

Moo ii yo

Nee, moshimo

Boku no negai ga kanaunara

Kimi to onaji mono ga hoshinda

Demo boku ni wa sonzaishinai kara

Jya semete koko ni kite yo

Kimi ni dore dake aisa rete mo

Boku no shinzou wa hitotsudake

Yamete yo, yamete yo, yasashiku shinaide yo

Doushitemo boku ni wa rikai ga dekinai yo

Itaiyo itaiyo, kotoba de oshiete yo

Kon'na no shiranai yo hitori ni shinaide

Hidoi yo hidoi yo, moo isso boku no karada o

Kowashite hikisaite sukina you ni shite yo

Sakende mo kaite mabuta o harashite mo

Mada kimi wa boku no koto o dakishimete hanasanai

Moo ii yo

Nee, moshimo

Boku ni kokoro ga arunara

Dou yatte sore o mitsukereba ii no?

Sukoshi hohoende kimi ga iu

Sore wa ne, koko ni aru yo

maapaapaaap


5. Soal matematika integral kelas XII


4 d. 3x-4
f(x) = n.a x pangkat n-1.
= -4.3x pangkat -4-1
=-12xpangkat 5.
untuk soal nomer 2. sama rumusnya kayak gini..

6. HUKUM IDMA - FISIKA KELAS XII SMA


Jawaba

Penjelasan:

jsj


7. Quiz!!jawab soal fisika kelas XIIlumayan poinnya​


Jawaban:

1.kuat arus (d)

3.3.5 A (D)

Jawaban:

Semoga dapat terbantu ya :)

1. D. Kuat Arus

Penjelasan singkat: I = q / t (muatan per satuan waktu)

2. D. 11 Ohm

Penjelasan singkat: Rtot = R1 + R2 + R3 = 2 + 3+ 6 = 11 Ohm

3. D. 3,5 A

Penjelasan singkat: Rtot = R1 + R2 + R3 = 3 + 4+ 5 = 12 Ohm

                                Arus = V / Rtot = 42 / 12 = 3,5 A

4. E. 4 Ohm (Gambar kurang jelas, tidak ada keterangan R1-4)

Penjelasan singkat: misal R1 R2 resistor atas, R3 R4 resistor bawah

R12 = R1 + R2 = 2+4 = 6 ohm

R34 = R3 +R4 = 4 + 8 = 12 ohm

Rtot = (R12 + R34)^-1 = (1/6 +1/12)^-1 = (3/12)^-1 = (1/4)^-1 =4 ohm

5. C. Besar

Penjelasan singkat: R = [tex]\rho\frac{ l}{A}[/tex] , semakin panjang kawat, maka nilai R akan semakin besar


8. soal matematika kelas XII


Semoga membantu......

9. soal matematika matriks kelas xii


semoga membantu.........0

10. Mohon bantuannya. Soal ujian semester 1 kelas XII Fisika


Στ = 0 dihitung thd titik Q

mB. g. XQ + mb.OQ - Tp. PQ = 0

20. 10. 1,5 + 12. 10. 0,5 - Tp. 2 = 0

300 + 60 - 2Tp = 0

2.Tp = 360

Tp = 180 N


Jawaban. D


11. Soal matriks kelas XII


biasa kan mikir dan belajar terus dengan giat

12. Soal peluang sma kelas XII


banyak susunan huruf = 6!/3! = 6 . 5 . 4 . 3 . 2 . 1 / (3 . 2 . 1)
= 720/6 = 120 

jawaban di pilihan D

13. Potensial Listrik. Fisika Kelas XII​


Jawaban:

Pontensial listrik adalah sbg usaha memindahkan muatan positif sebesar 1 muatan yg tak terhingga ke suatu titik tertentu


14. soal integral kelas xii


PERTANYAAN
1. ∫ (4x+2) (5 - 1/2 x) dx = ...
2. Diketahui F'(x) = 3x^2+4x-5 dan F(2) = 18. Jika F'(x) adalah turunan pertama F(x), maka persamaan F(x)

JAWABAN

1) ∫ (4x+2) (5 - ½x) dx
= ∫ (-2x² + 19x + 10) dx
= -(2/3)x³ + (19/2)x² + 10x + c

2) F'(x) = 3x^2+4x-5
F(x) = ∫ (3x² + 4x – 5) dx
= x³ + 2x – 5x + c
F(2) = 2³ + 2(2) – 5(2) + c = 18
8 + 4 – 10 + c = 18
c = 16
F(x) = x³ + 2x – 5x + 16

yang mananyaa yg mau dikerjain?-__-
kalo masalah integral itu invers dari turunan laah..
seperti [tex] \int\limits^a_b f({x}) \ dx = F(x) + C[/tex]
f'x= f(x)
Jadi kalo masalah integral sin cos ituu, pakai rumus integral fungsi trigonometri:
saya beri satu contoh saja yaah..
integral sinx dx = -cosx+C

[tex] \int\limits^ \frac{3 \pi }{4} _b(2-4sin ^{2} {x}) \, dx = 2-4 sin^{2} x = 2-4(1- \frac{cos2x}{2}) = 2- 2(1-cos2x) = 2cos2x[/tex]
ituu saja yaa contohnyaa

15. Rangkaian arus searah fisika kelas xii ipa​


Jawaban:

I₁ = 1,5 A

I₂ = Vp/4 = 3/4 = 0,75 A

I₃ = Vp/6 = 3/6 = 0,5 A

I₄ = Vp/12 = 3/12 = 0,25 A

Penjelasan:

4Ω, 6Ω dan 12Ω di paralel

1/Rp = 1/4 + 1/6 + 1/12

1/Rp = 6/12

Rp = 12/6 = 2 Ω

Hambatan total

Rt = Rp + 5 + 1 = 2 + 5 + 1

Rt = 8 Ω

Arus total

It = E/Rt = 12/8 = 1,5 A

Tegangan di hambatan paralel

Vp = It . Rp = 1,5 . 2 = 3 V

Arus di setiap cabang

I₂ = Vp/4 = 3/4 = 0,75 A

I₃ = Vp/6 = 3/6 = 0,5 A

I₄ = Vp/12 = 3/12 = 0,25 A

I₁ = It = 1,5 A


16. olimpiade fisika lebih dominan pelajaran kelas berapa? X atau XI atau XII?


kalau aku lihat dari pengalaman temenku, olimpiade fisika dominan pelajaran kelas X, XI soalnya kan pelajaran kelas XII cuma ngulang pelajaran kelas X, XIbiasanya kelas XII tapi ga menutup kemungkinan pelajaran kelas X dan XI lebih dominan

17. fisika kelas XII no 12


kurang lebih seperti itu...mohon dikoreksi jika ada yang kurang tepat.

18. Pertanyaan FisikaMateri : Listrik DinamisKelas : XII SMASoal : Pada gambar




GGL total
ΣE = E1 + E2 + E3
ΣE = -8 + 6 + 8 = 6 V

Hambatan dalam total
Σr = 0,5 + 0,5 + 1 = 2 ohm

Hambatan luar total
ΣR = 2 + 2 + 3 + 4 + 4 + 8
ΣR = 23 ohm

Kuat arus
i = ΣE / (ΣR + Σr)
i = 6 / (23 + 2)
i = 0,24 A
searah putaran jarum jam

Energi listrik pada hambatan luar
W = i² ΣR t
W = 0,24² • 23 • 30
W = 39,744 J

Energi listrik pada hambatan dalam (hilang memjadi panas)
Wr = 0,24 • 2 • 30 = 3,456 J

Energi total
W = V i t
W = 6 • 0,24 • 30 = 43,2 J
atau
W = 39,744 + 3,456 = 43,2 J
cocok ✓

19. tolong bantuannya fisika kelas XII IPA​


Jawaban:

saya waktu kelas 9 gitu materinya


20. SOAL NYA MAPEL KIMIAKELAS XII ​


Jawaban:

1. Titik didih = 100,104 °C dan Titik Beku = -0,372 °C

2. Mr = 60

Penjelasan:

Soal 1

∆Tb = m × Kb

∆Tb = 18/180 × 1000/500 × 0,52

∆Tb = 1/10 × 2 × 0,52

∆Tb = 0,104

Titik didih = 100,104 °C

∆Tf = m × Kf

∆Tf = 18/180 × 1000/500 × 1,86

∆Tf = 1/10 × 2 × 1,86

∆Tf = 0,372

Titik beku = -0,372 °C

Soal 2

∆Tb = m × Kb

0,26 = 3/Mr × 1000/100 × 0,52

0,26 = 15,6/Mr

Mr = 15,6/0,26

Mr = 60


21. soal kelas XII ADM PAJAK ​


Jawaban:

jawaban terlampir

semoga membantu

#Selamat belajar

#Brainly


22. soal limit tak hinggakelas XII​


Jawaban:

Jawabannya D.2

.

.

semoga membantu


23. soal limitkelas XII​


[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]

PEMBAHASAN

Nilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :

[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]

Operasi pada limit adalah sebagai berikut :

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]

[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]

Rumus untuk limit fungsi trigonometri :

[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]

.

DIKETAHUI

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

Cek dengan substitusi langsung.

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4(\frac{\pi}{2}-\pi)cos^2(\frac{\pi}{2})}{\pi(\pi-2(\frac{\pi}{2}))tan(\frac{\pi}{2}-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{0}{0}[/tex]

.

Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :

[tex]cos\theta=sin\left ( \frac{\pi}{2}-\theta \right )[/tex]

[tex]sin(-\theta)=-sin\theta[/tex]

.

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(\frac{\pi}{2}-x)}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[sin-(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[-sin(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(x-\frac{\pi}{2})}{-2(x-\frac{\pi}{2})tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi} \lim_{x \to \frac{\pi}{2}} (x-\pi)\times \lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{(x-\frac{\pi}{2})}\times\lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times(\frac{\pi}{2}-\pi)\times1\times1[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times-\frac{\pi}{2}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=1[/tex]

.

KESIMPULAN

[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]

.

PELAJARI LEBIH LANJUTLimit trigonoemtri : https://brainly.co.id/tugas/32389794Limit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, trigonometri.


24. soal limit tak hinggakelas XII​


[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]

PEMBAHASAN

Nilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :

[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]

Operasi pada limit adalah sebagai berikut :

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]

[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]

.

DIKETAHUI

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{5^x}{3^x+2^x}\times\frac{\frac{1}{3^x}}{\frac{1}{3^x}}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]

Perhatikan bahwa [tex]\frac{5}{3}>0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju ∞.

Sedangkan [tex]\frac{2}{3}< 0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju 0.

Maka :

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\lim_{x \to \infty} \left ( \frac{5}{3} \right )^x}{\lim_{x \to \infty} 1+\left ( \frac{2}{3} \right )^x}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\infty}{1+0}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\infty[/tex]

KESIMPULAN

[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]

.

PELAJARI LEBIH LANJUTLimit tak hingga : https://brainly.co.id/tugas/32409886Limit tak hingga : https://brainly.co.id/tugas/28942347Limit fungsi : https://brainly.co.id/tugas/30308496

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, tak hingga.


25. Soal ujian nasional matematika dan fisika kelas xii semester ganjil di rumah di rumah dan fisika kelas xii ipa yang sudah mengandung vitamin yang bijak di rumah dan taman lainnya dari berbagai sumber yang bijak di rumah dan taman lainnya dari berbagai sumber yang bijak di rumah dan


lah mana soalnya ;-;

26. Nomor 6. Tolong dibantu soal kelas XII


syaraat tegak lurus
berarti sudutnya = 90
a · b = |a| |b|

a · b = (2)(p) + (-5)(-2) + (1)(4)
        = 2p + 14
|a| = √(2² + (-5)² + 1²)
     = √(4 + 25 + 1)
     = √30
|b| = √(p² + (-2)² + 4²)
     = √(p² + 4 + 16)
     = √(p² + 20)

a · b = |a| |b|
2p + 14 = √(30p² + 60)
4p² + 56p + 196 = 30p² + 60
26p² - 56p - 136 = 0
p = 2/13 [7 - 3√30]
atau 
p = 2/13 [7 + 3√30]

27. Soal Fungsi Trigonometri, Matematika kelas XII​


Penjelasan dengan langkah-langkah:

6).

sin (x + y) = x - y

dy/dx (sin(x + y) = x - y)

y' cos(x + y) = -y'

cos(x + y) = -1

dy/dx (cos(x + y) = -1)

-y' sin(x + y) = 0

sin(x + y) = 0

7). ini maksudnya cari nilai apa ya?

8).

y = 5 cos x - 2 sin x

dy/dx = -5 sin x - 2 cos x

d²y/dx² = -5 cos x + 2 sin x

d²y/dx² + y = 2 sin x - 5 cos x + 5 cos x - 2 sin x

y/dx² + y = 0

9). Maaf kurang tau caranya

10).

[tex]f(x) = \frac{ \frac{x + 1}{x} + 2 }{x} + 3 \\ \\ f(x) = \frac{ \frac{x}{ x } + \frac{1}{x} + 2}{x} + 3 \\ \\ f(x) = \frac{ \frac{1}{x} + 3 }{x} + 3 \\ \\ f'(x) = \frac{ - \frac{1}{ {x}^{2} } \times x - (\frac{1}{x} + 3) \times 1}{ {x}^{2} } \\ \\ f'(x) = \frac{ - \frac{2}{ {x} } - 3}{ {x}^{2} } \\ \\ f'(x) = - \frac{ 2}{ {x}^{3} } - \frac{3}{ {x}^{2} } [/tex]

Maaf kalau salah


28. soal matematika kelas XII, bantu jawab kak​


Jawaban:

misalkan :

x : banyak penumpang kelas utama

y :banyak penumpang kelas ekonomi

maka, pemodelan matematika untuk soal diatas adalah sebagai berikut.

[tex]x + y \leqslant 48 \\ 3x + y \leqslant 72 \\ x \geqslant 0 \\ y \geqslant 0[/tex]

jadi , jawabannya adalah D.

Materi : SPLDV

#semoga membantu


29. soal limitkelas XII​


[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]

PEMBAHASAN

Nilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :

[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]

Operasi pada limit adalah sebagai berikut :

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]

[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]

Rumus untuk limit fungsi trigonometri :

[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]

.

DIKETAHUI

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

Cek dengan substitusi langsung.

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{\left ( \frac{\pi}{4}-\frac{\pi}{4} \right )sin\left ( 3(\frac{\pi}{4})-\frac{3\pi}{4} \right )}{2(1-sin2(\frac{\pi}{4}))}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{0}{0}[/tex]

.

Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :

[tex]sin\theta=cos\left ( \frac{\pi}{2}-\theta \right )[/tex]

[tex]cos(-\theta)=cos\theta[/tex]

[tex]cos2\theta=1-2sin^2\theta[/tex]

.

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos[-(2x-\frac{\pi}{2})]}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos(2x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos2(x-\frac{\pi}{4})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-[1-2sin^2(x-\frac{\pi}{4})]}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{2sin^2(x-\frac{\pi}{4})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}\times\lim_{x \to \frac{\pi}{4}} \frac{sin3\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\times1\times3[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{3}{4}[/tex]

.

KESIMPULAN

[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]

.

PELAJARI LEBIH LANJUTLimit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421Limit trigonometri : https://brainly.co.id/tugas/30243881

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, trigonometri


30. soal try out kelas XII


[tex] \frac{1}{8} ^{- \frac{1}{3} } + 4^{ \frac{3}{2} } - 81^{ \frac{3}{4} } = 2^{-3.- \frac{1}{3} } + 2^{2. \frac{3}{2} } - 3^{4. \frac{3}{4} } = 2 + 2^{3} - 3^{3} = 2 + 8 - 27[/tex] = -17

Semoga Membantu...

31. Fisika kelas XII tentang hukum Ohm. Tolong bantu ya kak!​


Jadi, besaran listrik yang terukur adalah 3 A

Pendahuluan

Kuat arus listrik merupakan sebuah aliran muatan dasar yang dipunyai oleh tiap partikel penyusun atom yang melewati sebuah objek - objek yang dapat menghantar panas dengan baik dalam rentang waktu tertentu. Arus listrik merupakan sebuah aliran yang terjadi akibat banyaknya muatan yang dipunyai oleh tiap partikel penyusun atom yang mengalir titik satu dengan yang lainnya dalam sebuah susunan dari setiap satuan waktu.

Pada umumnya, aliran arus listrik menyertai arah aliran muatan positif. Jadi, aliran tersebut mengalir dari positif ke yang negatif. Dapat diketahui bahwa arah alirannya dapat dibagi menjadi 2 macam, yaitu :

Arus Bolak-BalikArus Searah

Rumus Kuat Arus Listrik :

[tex]\tt I = \frac{Q}{t}[/tex]

Ket :

I = Arus listrik (A)

Q = Muatan listrik (C)

t = Waktu (s)

Pembahasan

Diketahui :

Skala maksimum = 100

Batas ukur = 5 A

Skala yang ditunjuk = 60

Ditanya :

Hasil amperemeter..?

Jawab :

Arus yang mengalir

[tex]\tt = \frac{Skala~yang~ditunjuk}{Skala~maksimal} \times Batas~ukur\\\\= \frac{60}{100} \times Batas~ukur\\\\= \frac{6}{10} \times 5\\\\= \tt 3~A[/tex]

✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

Pelajari Lebih LanjutMateri tentang energi listrik, kuat arus listrik, daya listrik : https://brainly.co.id/tugas/14848823Materi tentang energi listrik yang mengalir pada lampu : https://brainly.co.id/tugas/14702880Materi tentang biaya yang harus dikeluarkan selama 10 hari : https://brainly.co.id/tugas/13819767Materi tentang kuat arus listirik yang mengalir dalam rangkaian : https://brainly.co.id/tugas/17469950

✍✍✍✍✍✍✍✍✍✍✍✍✍

⏭Detail Jawaban⏮

Kelas: 8

Mapel: Fisika

Kategori : Bab : 8 - Listrik

Kode: 8.6.8

Kata kunci: arus, listrik, rangkaian, mengalir, pengukuran, amperemeter, kuat arus listrik


32. Tolong dong kerjain soal ini berikut dengan penyelesaian nya​ please jawab soal inisoal fisika kelas XII


Jawaban:

C 4,5 × 10 volt

Penjelasan:

karna disitukan ada tanda merahnya


33. Seorang petugas perpustakaan akan menyusun tiga macam buku, yaitu buku matematika, fisika san kimia. Buku matematika kelas XII ada sebanyak 5 buku, fisika kelas XII sebanyak 3 buku dan kimia sebanyak 2 buku kelas XI dan XII . Jika buku-buku tersebut disusun secara mendatar dengan buku kimia diletakan dipinggir , banyak cara menyimpan buku-buku tersebut adalah...


Diket:matematika=5 buku
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: fisika = 3buku[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: kimia= 2buku[/tex]

Dit:Banyak cara menyimpan buku tersebut....?

Jawab:
[tex]matematika + fisika = 5buku + 3buku[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 8buku[/tex]
kimia=2buku

Jadi,banyak cara menyimpan buku buku tersebut adalah 2×2!8! cara//.

34. Pilihan ganda soal agama kelas xii


I don't know. Karena saya masih kelas 7:)









35. soal bahasa indonesia kelas XII semester 1


"Tuntutan kaum buruh ini bermula sejak era industri awal abad ke-19"
jika diperhatikan konjungsinya pernyataan tersebut merupakan kalimat...

a.simpleks
b.kompleks
c.imperatif
d.interogatif
e.tak langsung"Tuntutan kaum buruh ini bermula sejak era industri awal abad ke-19" jika diperhatikan konjungsinya pernyataan tersebut merupakan kalimat... a.simpleks b.kompleks c.imperatif d.interogatif e.tak langsung Maaf klo slh

36. Tuliskan semua BAB mapel fisika SMA kelas XII untuk K13. Makasih sebelumnya :)


Materi Fisika SMA Kelas XII Semester Ganjil

Bab 1.  Gejala Gelombang 

Bab 2.  Gelombang Bunyi 

Bab 3.  Optika Fisis 

Bab 4.  Listrik Statis 

Bab 5.  Medan Magnetik

Materi Fisika SMA Kelas XII Semester Genap

Bab 6.  Dualisme Gelombang & Radiasi Benda Hitam 

Bab 7.  Fisika Atom 

Bab 8.  Teori Relativitas Khusus 

Bab 9.  Fisika Inti

37. soal bahasa inggris sma kelas xii tentang gerund


1. ____ all the way home made us tired.
    A. Walk
    B. Walking
    C. We have walked
    D. We walk
    E. We are walking

The Answer : B. Walking

38. Soal tentang vektor kelas XII


p = (-2, -1, -3)
q = (3, -2, 1)

|p| = √[(-2)² + (-1)² + (-3)²]
    = √[4+1+9]
     = √14
|q| = √[(3)² + (-2)² + (1)²]
     = √[9+4+1]
      = √14
p · q = (-2)(3) + (-1)(-2) + (-3)(1)
        = -6 + 2 - 3
        = -7
misalkan α adalah sudut antar p dan q
besar sudut antara vektor p dan q adalah
p · q = |p| |q| . cos α
-7 = (√14)(√14) . cos α
-7 = 14 . cos α
cos α = -7/14
cos α = -1/2
α = 4π/6  ,  8π/6
α = 120° , 240°

39. bagaimana cara menghitung orde gelombang? (fisika kelas XII)


Jika sebuah gelombang permukaan air tiba pada suatu celah sempit, maka gelombang ini akan mengalami lenturan/pembelokan sehingga terjadi gelombang-gelombang setengah lingkaran yang melebar di daerah belakang celah tersebut. Gejala ini disebut difraksi.

40. Seorang petugas perpustakaan akan menyusun tiga macam buku, yaitu buku matematika, fisika san kimia. Buku matematika kelas XII ada sebanyak 5 buku, fisika kelas XII sebanyak 3 buku dan kimia sebanyak 2 buku kelas XI dan XII . Jika buku-buku tersebut disusun secara mendatar dengan buku kimia diletakan dipinggir , bany


dipinggir buku fisika


Video Terkait

Kategori fisika