Contoh Soal Fungsi Invers Dan Pembahasannya

Contoh Soal Fungsi Invers Dan Pembahasannya

Contoh soal cerita dan pembahasan tentang fungsi invers

Daftar Isi

1. Contoh soal cerita dan pembahasan tentang fungsi invers


invers adalah kebalikan. Pada sebuah fungsi matematika jika kita ingin mencari salah satu variabel (mis: y) maka kita harus menginverskan fungsi tersebut. Invers juga disebut hukum kaus kaki, karena sama seperti kita membolak balikkan kaus kaki.

carilah invers dari
[tex]f(x) = \frac{3x - 9}{8 - 2x} [/tex]
semoga bermanfaat

2. tolong buat contoh-contoh soal tentang fungsi invers beserta pembahasannya


y=f(x)=5x-7
jawab
y=5x-7
5x=y+7
x=y+7/5
x=f^-1(y)=y+7/5
jadi fungsi invers dari y=f(x)=5x-7 adalah f^-1(x)=x+7/5

3. Contoh soal fungsi invers dan pembahasannya kelas 10 brainly


diketahui

f(x) = 5x+10

ditanya

f invers x..

jawab

y = 5x+10 <---> 5x = y - 10

<---> x = (y-10) / 5

<---> f invers y = (y-10) / 5

maka f invers x = (x-10) / 5

semoga bermanfaat


4. saran soal cerita fungsi invers yang jarang dipake dong, soal cerita + pembahasannya ya klo bisa


Soal cerita fungsi:

Rayan adalah pemain basket profesional, dia bisa memukul bola (jarak 1 meter) setiap x lemparan adalah f(x) , bola yang masuk mengikuti fungsi

f(x) = x - 1/2x yang merupakan jumlah bola yang dimasukkan, jika dia membuat 20 lemparan, berapa banyak bola yang masuk?

Penjelasan dengan langkah-langkah:

f(x) = x - 1/2x

f(20)= 20- 1/2*20

       = 20-10 = 10

Jadi setiap 20 lemparan Rayan bisa memasukkan 10 bola.

Fungsi, dalam istilah matematika, adalah pemetaan setiap bagian dari suatu himpunan (dikenal sebagai domain) ke subset dari himpunan lain (dikenal sebagai kodomain). Istilah ini memiliki arti yang berbeda dari kata yang sama yang digunakan sehari-hari, seperti "alat berfungsi dengan adil". Konsep fungsi adalah salah satu konsep dasar matematika dan setiap ilmu kuantitatif.

Pelajari lebih lanjut

Pelajari lebih lanjut tentang :

Apa pengertian fungsi dalam matematika pada https://brainly.co.id/tugas/1376015

#BelajarBersamaBrainly


5. soal tentang invers fungsi​


Jawab:

Penjelasan dengan langkah-langkah:

Ada di foto


6. 5 contoh soal fungsi invers beserta jawabannya ​


Jawab:

CONTOH SOAL:

Jika f(x) = x - 3 maka f-[tex]Pangkat 1[/tex](x)

A. x - 3

B. 3 - x

C. x + 3

D. x

Penjelasan dengan langkah-langkah:

JAWABAN : C. x + 3

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

[tex]= f(x) = x - 3\\= y = x - 3\\[/tex]

[tex]= x = y + 3\\= Ganti x menjadi fpangkat1 (x) dan y menjadi x sehingga diperoleh hasil f-pangkat1 (x) = x + 3[/tex]


7. contoh soal dan pembahasanya tentang fungsi komposisi invers


Jawab:

Diketahui fungsi [tex]\displaystyle f(x)=\frac{x-2}{x+2}[/tex] dan [tex]\displaystyle g(x)=x+2[/tex], maka [tex]\displaystyle (f\circ g)^{-1}(x)=\cdots[/tex]

Penjelasan dengan langkah-langkah:

Cara pertama

Komposisikan kedua fungsi

[tex]\begin{aligned}(f\circ g)(x)&\:=f(g(x))\\\:&=f(x+2)\\\:&=\frac{x+2-2}{x+2+2}\\\:&=\frac{x}{x+4}\end{aligned}[/tex]

Invers kan

[tex]\begin{aligned}y&\:=\frac{x}{x+4}\\xy+4y\:&=x\\(y-1)x\:&=-4y\\x\:&=-\frac{4y}{y-1}\\(f\circ g)^{-1}(x)\:&=-\frac{4x}{x-1}\end{aligned}[/tex]

Cara kedua

Invers kan masing-masing fungsi

[tex]\begin{aligned}f(x)&\:=\frac{x-2}{x+2}\\y\:&=\frac{x-2}{x+2}\\xy+2y\:&=x-2\\(y-1)x\:&=-2(1+y)\\x\:&=-\frac{2(1+y)}{y-1}\\f^{-1}(x)\:&=-\frac{2(x+1)}{x-1}\end{aligned}[/tex]

dan

[tex]\begin{aligned}g(x)&\:=x+2\\y\:&=x+2\\x\:&=y-2\\g^{-1}(x)\:&=x-2\end{aligned}[/tex]

Berdasarkan kedua rumus

[tex]\displaystyle \boxed{\begin{matrix}(f\circ g)^{-1}(x)=\left ( g^{-1}\circ f^{-1} \right )(x)\\ (g\circ f)^{-1}(x)=\left ( f^{-1}\circ g^{-1} \right )(x)\end{matrix}}[/tex]

maka

[tex]\begin{aligned}(f\circ g)^{-1}(x)&\:=\left ( g^{-1}\circ f^{-1} \right )(x)\\\:&=g^{-1}\left ( f^{-1}(x) \right )\\\:&=g^{-1}\left ( \frac{-2x-2}{x-1} \right )\\\:&=\frac{-2x-2}{x-1}-2\\\:&=\frac{-2x-2-2(x-1)}{x-1}\\\:&=-\frac{4x}{x-1}\end{aligned}[/tex]


8. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?


Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51

9. contoh fungsi invers



Misalnya anggap saja f sebuah fungsi dari himpunan A ke himpunan B. Bila dapat ditentukan sebuah fungsi g dari himpunan B ke himpunan A sedemikian, sehingga g(f(a)) = a dan f(f(b))=b untuk setiap a dalam A dan b dalam B, maka g disebut fungsi invers dari f dan bisa ditulis sebagai f-1.


10. contoh soal dan jawaban tentang fungsi invers


soal :
dik : matriks A ( 5 -7 ) maka A(pangkat)-1 =……
( 3 -4 )


jawab :
1/-20-(-21) (-4 7) = 1/1 (-4 7) = (-4 7)
(-3 5) (-3 5) (-3 5)

11. soal fungsi komposisi dan fungsi invers


ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers

12. contoh soal fungsi invers dan jawaban


diketahui f(X)=-(2-3x)/2, maka fpangkat-1=
f(x)=-(2-3x)/2
f(x)=(-2+3x)/2
⇒y=(-2+3x)/2
⇒2y=-2+3x
⇒2y+2=3x
⇒x=(2y+2)/3
jadi fpangkat-1(x)=(2x+2)/3
⇒fpangkat-1(x)=2(x+1)/3
⇒fpangkat-1(x)=2/3(x+1)
jika g (x+1) = 2x - 1 dan f(g(x+1)) = 2x +4 maka f(0) = ...
pembahasan:
g(x+1) = 2x-1
f(g(x+1)) = 2x+4
maka f(2x-1) = 2x+4
misal 2x-1 = P maka x = (P+1)/2
maka f(P) = 2{(P+)/2} + 4
maka f(P) = P + 1 + 4
maka f(x) = x + 5

13. soal cerita fungsi invers​


Jawab:

Penjelasan dengan langkah-langkah:

komposisi

soal

i)  f(x)= 2x- 1

ii) g(x) =x² - 3x

a. fungsi yang menyatakan jumlah kertas

=  g {f (x)}

= g (2x-1)

= (2x - 1)² - 3 (2x- 1)

=  4x² - 4x + 1 - 6x + 3

= 4x²  - 10x + 4

b) bahan  baku x= 4

banyak kertas = g{f(4)}

= g{2(4 )- 1}

= g(7)

= 7² - 3(7)

= 49 - 21

= 28 satuan


14. contoh soal fungsi invers


0 2 2
0 0 2
0 0 0
adalah contoh invers

15. Latihan soal Fungsi Invers​


Jangan lupa bintang 5 dan like yah : )

......


16. tolong teman berikan 2 contoh soal invers dan pembahasannya


1. jika f(x) =[tex] \frac{x + 1}{2x - 4} [/tex] untuk x [tex] \neq [/tex]2  , maka invers fungsi f(x) adalah ......

penyelesaian :
f (x)[tex] \frac{ax + b}{cx + d} [/tex]  [tex] f^{-1} = \frac{-dx+b}{cx-a} f(x) = \frac{x+1}{2x-4} x \neq 2 f^{-1} = \frac{4x+1}{2x-1} x \neq \frac{1}{2} [/tex]

17. Kak kaka coba dong buatin contoh soal fungsi invers dan pembahasanya


Semoga membantu...... ☺

18. berikan contoh soal dan penyelesaian tentang invers dari fungsi dan fungsi komposisi



fungsi komposisi:

1.diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:(f o g)(x) = g dimasukkan ke f menggantikan x(f o g)(x) = 3(2x)-4(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x(g o f)(x) = 2(3x-4)(g o f)(x) = 6x-8



19. Berikan contoh soal menentukan invers dari fungsi komposisiMhon di jwab​


Jawaban:

jika f(x) = 3× + 2 dan g(x) = 4×2.maka ( f o g) (x) dan (g o f) (x) adalah...

maaf kalo salah


20. contoh fungsi invers dan fungsi komposisi​


fungsi invers

f(x) =3x+5

y=3x+5

y-5=3x

y-5/3=x

inversnya = x-5/3


21. contoh soal invers fungsi?​


Jawaban:

Jika f(x) = 2x – 6 maka f-1(x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1/2x – 3

D. -1/2x + 3

E. x – 12

Pembahasan

Agar dapat menentukan fungsi invers,maka harus dapat menentukan persamaan x-nya dahulu.

f(x) = 2x – 6

2x = f(x) + 6

x = f(x) + 6 / 2 (ubah x menjadi f-1(x) dan f(x) diganti dengan x)

f-1(x) = (x + 6) / 2 = 1/2 x + 3

Jawaban: B


22. contoh soal fungsi invers


invers matrik apa invers persamaan gan?

23. contoh soal fungsi operasi aljabar pada fungsi,fungsi komposisi,fungsi invers


soal sbmptn fungsi komposisi invers

24. contoh soal fungsi invers


1.f(x)=2x-4
2.f(x)=x2-4x+2

25. contoh soal fungsi invers


diketahui f(x)=-(2-3x)/2 maka f^-1(x)=

itu contoh soal fungsi invers


26. contoh soal fungsi invers


Jika f(x) = 2x - 6 maka fˉ¹(x) =

Pembahasan :
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan fˉ¹(x) dan f(x) diganti dengan x )

fˉ¹(x) = (x + 6) / 2
         = 1/2 x + 3

semoga dapat membantu

27. contoh soal fungsi invers dan jawabannya


Diketahui f(x) = -(2-3x) /2 , maka f-¹(x) sama dengan....

A. ⅔ (1 + x)
B. ⅔ (1 - x)
C. 3/2 (1 + x)
D. -⅔ (1 + x)
E. -3/2 (x - 1)

Pembahasan :
f(x) = -(2-3x) /2
f(x) = (-2+3x) /2

y = (-2+3x) /2
2y = -2+3x
2y + 2 = 3x
x = (2y+2) /3

Jadii..
f-¹(x) = (2x+2) /3
f-¹(x) = 2(x+1) /3
f-¹(x) = ⅔ (x + 1)...(A)


maav kalau salah

28. apa itu invers fungsi? berikan satu contoh soal invers fungsi ​


Jawaban:

menurut Wikipedia invers fungsi adalah Fungsi Invers adalah fungsi yang merupakan kebalikan aksi dari suatu fungsi.

Penjelasan dengan langkah-langkah:

contoh soal invers fungsi

Diketahui f(x) = x2 – 3x dan g(x) = 2x + 1. Tentukan (f – g)(x).

Jawab:

(f – g)(x) = f(x) – g(x)

(f – g)(x)= x2 – 3x – (2x + 1)

(f – g)(x)= x2 – 3x – 2x – 1

(f – g)(x)= x2 – 5x – 1

Jawaban:

invers fungsi adalah kebalikan dr suatu fungsi. biasanya disimbolkan dg tanda (^-1) pd fungsi yg akan di invers.

Contoh :

Tentukan invers dari :

a. f(x) = x + 2

b. f(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

Jawab :

a. f(x) = x + 2

invers,

f(x) = y

y = x + 2

x = y - 2

f-¹(x) = x - 2

b. f(x) = 3x + 1 / 2x - 3

invers,

f(x) = y

y = 3x + 1 / 2x - 3

y(2x - 3) = 3x + 1

2xy - 3y = 3x + 1

2xy - 3x = 3y + 1

x(2y - 3) = 3y + 1

x = 3y + 1 / 2y - 3

f-¹(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

invers,

f(x) = y

y = x² - 2x + 1

y = (x - 1)²

(x - 1) = √y

x = 1 ± √y

f-¹(x) = 1 ± √x


29. contoh soal fungsi invers


Dik : f(x) = -(2-3x) / 2, tentukan fungsi invers nya........

30. buatlah 5 contoh soal fungsi invers dan penyelesainnya​


Jawaban:

1. Jika f (x) = 2x – 6, maka f-1 (x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1 / 2x – 3

D. -1 / 2x + 3

E. x – 12

Diskusi

Untuk menentukan fungsi invers, Anda harus terlebih dahulu menentukan persamaan x.

f (x) = 2x – 6

2x = f (x) + 6

x = f (x) + 6/2 (perubahan x ke f-1 (x) dan f (x) digantikan oleh x)

Jawab: B

2. Jika f (x) = 5 – 1 / 3x, maka f-1 (x) = …

A. 3x + 15

B. 3x – 15

C. -3x + 15

D. -3x – 15

E. -3x + 5/3

Diskusi

f (x) = 5-1 / 3x

1 / 3x = 5 – f (x)

x = (5 – f (x)). 3

x = 15 – 3 f (x)

f-1 (x) = -3x + 15

Jawab: C

3. Jika f (x) = (x + 3) / (x – 2), f-1 (x) = …

A. (2x + 3) / (x – 1)

B. (x – 3) / (x + 2)

C. (2x + 3) / (x +1)

D. (-2x + 3) / (x + 1)

E. (-x + 3) / (x – 2)

Diskusi:

Langkah 1:

Biarkan f (x) = y

y. = (x + 3) atau (x – 2)

y (x – 2) = x + 3

yx – 2y = x + 3

yx – x = 2thn + 3

x (y – 1) = 2y + 3

x = (2y + 3) / (y – 1) Kemudian ganti x dengan f-1 (x) dan y dengan x

f-1 (x) = (2x + 3) / (x-1)

Langkah 2:

Jika f (x) = (kapak + b) / (cx + d) Jadif-1 (x) = (-dx + b) / (cx-a))

Kemudian kita bisa bertukar tempat dan mengganti karakter 1 dengan -2.

f-1 (x) = (2x + 3) / (x-1)

Jawab: A

4. Jika f (x) = 2x / (x – 1), maka f-1 (1) = …

A. -1

B. 0

C. 1

D. 2

E. 3

Diskusi

Pertama tentukan f-1 (x)

y = 2x / (x – 1)

y (x – 1) = 2x

yx – y = 2x

yx – 2x = y

x (y – 2) = y

x = y / (y – 2)

f-1 (x) = x / (x – 2)

f-1 ((1)) = 1 / (1-2) = -1

Jawab: A

5. Invers didefinisikan sebagai f (x) = (x – 3) / (2x + 5), x ≠ – 5/2 dan f-1 (x) adalah kebalikan dari fungsi f (x). Rumus f-1 (x) adalah …

A. (5x + 3) / (1 – 2x)

B. (5x – 3) / (1 – 2x)

C. (5x + 3) / (2x + 1)

D. (2x + 3) / (5x + 5)

E. (2x – 3) / (5x + 5)

Diskusi

f (x) = (x – 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:

f – 0,1 (x) = (-dx + b) / (cx – a)

f-1 (x) = (-5x – 3) / (2x -1) atau pembilang dan penyebut – (min)

f-1 (x) = (5x + 3) / (-2x + 1)

f-1 (x) = (5x + 3) / (1 – 2x)

Jawab: A

6. Diberikan f (x) = (5x – 5) / (x – 5), kebalikan dari fungsi f (x) f-1 (x) = …

A. (x – 5) / (5x – 5)

B. (x + 5) / (5x – 5)

C. (5x-1) / (5x-5)

D. (5x-5) / (x-5)

E. (5x – 5) / (x + 5)


31. Soal Fungsi Invers….


3. f(x) = y

x + 3 = y

x = y - 3

f⁻¹(x) = x - 3

g(x) = y

-4x = y

x = -y/4

g⁻¹(x) = -x/4

h(x) = y

5x + 1 = y

5x = y - 1

[tex]x = \frac{y - 1}{5} \\ h {}^{ - 1} (x) = \frac{x - 1}{5} [/tex]

( f⁻¹ o g⁻¹ )(x) = f⁻¹[ g⁻¹(x) ]

= f⁻¹( -x/4 )

[tex] = - \frac{x - 3}{4} \\ = \frac{ - (x - 3)}{ 4} \\ = \frac{ - x + 3}{4} [/tex]

( ( f⁻¹ o g⁻¹ ) o h⁻¹ )(x) = ( f⁻¹ o g⁻¹ )[ h⁻¹(x) ]

[tex] = (f {}^{ - 1} og {}^{ - 1} )( \frac{x - 1}{5} ) \\ = \frac{ \frac{ - x + 3}{4} - 1}{5} \\ = \frac{ \frac{ - x + 3 - 4}{4} }{5} \\ = \frac{ \frac{ - x - 1}{4} }{5} \\ = \frac{ - x - 1}{4} \times \frac{1}{5} \\ = \frac{ - x - 1}{20} [/tex]


32. contoh fungsi invers


F(x) = 2x+5 , f⁻¹(x)=....

y=2x+5  
-2x = 5-y
2x = y-5
 x = y - 5 
         2
f⁻¹(x) = x-5
             2
      

33. Rumus Fungsi Komposisi dan Fungsi Invers dan contoh soal


Saya foto ya catatan saya + latihan juga

tapi ga cukup slot fotonya


34. contoh fungsi invers


itu rumus cepat bisa dihafalin sih semoga membantu

35. soal fungsi komposisi dan fungsi invers​


Jawab:

1. Jika  

f

(

x

)

=

a

x

+

b

maka  

f

(

z

)

=

a

z

+

b

atau  

f

(

g

(

x

)

)

=

a

g

(

x

)

+

b

(

f

g

)

(

x

)

=

f

(

g

(

x

)

)

(

f

g

)

1

(

x

)

=

(

g

1

f

1

)

(

x

)

(

f

1

f

)

(

x

)

=

I

(

x

)

(

f

1

)

1

(

x

)

=

f

(

x

)

Jika  

f

(

x

)

=

a

x

+

b

c

x

+

d

maka  

f

1

(

x

)

=

d

x

+

b

c

x

a

Jika  

f

(

a

)

=

b

maka  

f

1

(

b

)

=


36. contoh soal invers fungsi​


Jawaban:

Jika f(x) = x – 3 maka f-1(x) = …

A. x – 3

B. 3 – x

C. x + 3

D. x

E. 3

Pembahasan / penyelesaian soal

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = x – 3

y = x – 3

x = y + 3

Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3

Soal ini jawabannya C.

Contoh soal 2

Jika f(x) = 2 – 2x maka f-1(x) = …

A. 1 – 1/2x

B. 1/2 – x

C. 1/2x + 1

D. x + 1

E. x + 2

Penjelasan dengan langkah-langkah:

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = 2 – 2x

y = 2 – 2x

2x = 2 – y

x =

\frac {2 - y} {2}

ganti x = f-1(x) dan y = x sehingga diperoleh f-1(x) =

\frac {2 - x} {2} = 1 – 1/2x

Soal ini jawabannya A.

Contoh soal 3

Jika f(x) = 2x + 1 maka f-1(2) = …

A. 1/2

B. 1

C. 2

D. 3

E. 4

Pembahasan

y = 2x + 1

2x = y – 1

x =

\frac {y - 1} {2}

f-1(x) =

\frac {x - 1} {2}

f-1(2) =

\frac {2 - 1} {2} = 1/2

Soal ini jawabannya A.

mohon maaf kalau salah


37. Coba berikan contoh soal dan penyelesaiannya 1. mencari nilai invers dari suatu fungsi


Maaf kalau salah maklum kerja sendiri

38. tugas tentang fungsi invers buat pembahasan bya juga y​


Jawab:

Penjelasan dengan langkah-langkah:


39. SOAL KOMPOSISI FUNGSI DAN FUNGSI INVERS


f(x) = 3x +5/3x -7
dirubah ke bentuk invers
y = 3x + 5 / 3x - 7
3xy - 7y = 3x + 5
3xy - 3x = 7y + 5
x (3y - 3) = 7y + 5
x = 7y+5/3y - 3

f ⁻¹(x) = 7x + 5/ 3x - 3

40. Buatlah satu contoh soal fungsi invers yang memuat cara penyelesaian !


Penjelasan dengan langkah-langkah:

ada di lampiran


Video Terkait

Kategori matematika