Contoh Soal Fungsi Invers Kuadrat

Contoh Soal Fungsi Invers Kuadrat

apa fungsi fungsi Contohnya fungsi invers dan kuadrat"

Daftar Isi

1. apa fungsi fungsi Contohnya fungsi invers dan kuadrat"


Jadi invers dari fungsi f\left( x \right)=a{{x}^{2}}+bx+c adalah {{f}^{-1}}\left( x \right)=\frac{-b\pm \sqrt{{{b}^{2}}-4ac+4ax}}{2a}

Yang mana mirip dengan rumus ABC untuk mencari akar-akar Persamaan Kuadrat \left( {{x}_{1,2}}=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \right), kita tinggal menambahkan “+ 4ax” di akhir akar.

Rumus ini memudahkan kita untuk mencari invers fungsi kuadrat. Namun tetap, seorang siswa yang jeli tentu harus mempertimbangkan langkah yang paling mudah ketika mengerjakan beragam soal invers fungsi kuadrat.

Untuk itu, kakak bocorin Kunci 3D untuk mencari invers fungsi kuadrat sebagai berikut:

1. CEK apakah fungsi merupakan “Kuadrat Sempurna”

Untuk fungsi f\left( x \right)=a{{x}^{2}}+bx+c

CEK : apakah 2\sqrt{ac}=|b|

2. Jika iya, cari invers dengan Kuadrat Sempurna.

3. Jika tidak, cari invers dengan menggunakan rumus di atas : {{f}^{-1}}\left( x \right)=\frac{-b\pm \sqrt{{{b}^{2}}-4ac+4ax}}{2a}

Contoh Soal:

Tentukan invers dari fungsi kuadrat:

f\left( x \right)=4{{x}^{2}}-12x+9

f\left( x \right)={{x}^{2}}-3x+9

Jawab:

1. CEK apakah f\left( x \right)=4{{x}^{2}}-12x+9 merupakan kuadrat sempurna:

“Kuadrat Sempurna”

Jadi mencari invers dengan Kuadrat Sempurna:

Misal f\left( x \right)=y

Maka:

Jadi : {{f}^{-1}}\left( x \right)=\frac{3}{2}\pm \frac{1}{2}\sqrt{x}

2. CEK apakah f\left( x \right)={{x}^{2}}-3x+9 merupakan kuadrat sempurna:

“BUKAN Kuadrat Sempurna”

Jadi mencari invers dengan menggunakan rumus:

Fungsi kuadrat : a = 1, b = –3, c = 9

Maka invers :

Jadi : {{f}^{-1}}\left( x \right)=\frac{3\pm \sqrt{4x-27}}{2}

Mudah-mudahan artikel ini dapat membantu adik-adik dalam belajar matematika.


2. apa itu invers fungsi? berikan satu contoh soal invers fungsi ​


Jawaban:

menurut Wikipedia invers fungsi adalah Fungsi Invers adalah fungsi yang merupakan kebalikan aksi dari suatu fungsi.

Penjelasan dengan langkah-langkah:

contoh soal invers fungsi

Diketahui f(x) = x2 – 3x dan g(x) = 2x + 1. Tentukan (f – g)(x).

Jawab:

(f – g)(x) = f(x) – g(x)

(f – g)(x)= x2 – 3x – (2x + 1)

(f – g)(x)= x2 – 3x – 2x – 1

(f – g)(x)= x2 – 5x – 1

Jawaban:

invers fungsi adalah kebalikan dr suatu fungsi. biasanya disimbolkan dg tanda (^-1) pd fungsi yg akan di invers.

Contoh :

Tentukan invers dari :

a. f(x) = x + 2

b. f(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

Jawab :

a. f(x) = x + 2

invers,

f(x) = y

y = x + 2

x = y - 2

f-¹(x) = x - 2

b. f(x) = 3x + 1 / 2x - 3

invers,

f(x) = y

y = 3x + 1 / 2x - 3

y(2x - 3) = 3x + 1

2xy - 3y = 3x + 1

2xy - 3x = 3y + 1

x(2y - 3) = 3y + 1

x = 3y + 1 / 2y - 3

f-¹(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

invers,

f(x) = y

y = x² - 2x + 1

y = (x - 1)²

(x - 1) = √y

x = 1 ± √y

f-¹(x) = 1 ± √x


3. contoh soal fungsi invers


Dik : f(x) = -(2-3x) / 2, tentukan fungsi invers nya........

4. soal tentang invers fungsi​


Jawab:

Penjelasan dengan langkah-langkah:

Ada di foto


5. buatlah 5 contoh soal fungsi invers dan penyelesainnya​


Jawaban:

1. Jika f (x) = 2x – 6, maka f-1 (x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1 / 2x – 3

D. -1 / 2x + 3

E. x – 12

Diskusi

Untuk menentukan fungsi invers, Anda harus terlebih dahulu menentukan persamaan x.

f (x) = 2x – 6

2x = f (x) + 6

x = f (x) + 6/2 (perubahan x ke f-1 (x) dan f (x) digantikan oleh x)

Jawab: B

2. Jika f (x) = 5 – 1 / 3x, maka f-1 (x) = …

A. 3x + 15

B. 3x – 15

C. -3x + 15

D. -3x – 15

E. -3x + 5/3

Diskusi

f (x) = 5-1 / 3x

1 / 3x = 5 – f (x)

x = (5 – f (x)). 3

x = 15 – 3 f (x)

f-1 (x) = -3x + 15

Jawab: C

3. Jika f (x) = (x + 3) / (x – 2), f-1 (x) = …

A. (2x + 3) / (x – 1)

B. (x – 3) / (x + 2)

C. (2x + 3) / (x +1)

D. (-2x + 3) / (x + 1)

E. (-x + 3) / (x – 2)

Diskusi:

Langkah 1:

Biarkan f (x) = y

y. = (x + 3) atau (x – 2)

y (x – 2) = x + 3

yx – 2y = x + 3

yx – x = 2thn + 3

x (y – 1) = 2y + 3

x = (2y + 3) / (y – 1) Kemudian ganti x dengan f-1 (x) dan y dengan x

f-1 (x) = (2x + 3) / (x-1)

Langkah 2:

Jika f (x) = (kapak + b) / (cx + d) Jadif-1 (x) = (-dx + b) / (cx-a))

Kemudian kita bisa bertukar tempat dan mengganti karakter 1 dengan -2.

f-1 (x) = (2x + 3) / (x-1)

Jawab: A

4. Jika f (x) = 2x / (x – 1), maka f-1 (1) = …

A. -1

B. 0

C. 1

D. 2

E. 3

Diskusi

Pertama tentukan f-1 (x)

y = 2x / (x – 1)

y (x – 1) = 2x

yx – y = 2x

yx – 2x = y

x (y – 2) = y

x = y / (y – 2)

f-1 (x) = x / (x – 2)

f-1 ((1)) = 1 / (1-2) = -1

Jawab: A

5. Invers didefinisikan sebagai f (x) = (x – 3) / (2x + 5), x ≠ – 5/2 dan f-1 (x) adalah kebalikan dari fungsi f (x). Rumus f-1 (x) adalah …

A. (5x + 3) / (1 – 2x)

B. (5x – 3) / (1 – 2x)

C. (5x + 3) / (2x + 1)

D. (2x + 3) / (5x + 5)

E. (2x – 3) / (5x + 5)

Diskusi

f (x) = (x – 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:

f – 0,1 (x) = (-dx + b) / (cx – a)

f-1 (x) = (-5x – 3) / (2x -1) atau pembilang dan penyebut – (min)

f-1 (x) = (5x + 3) / (-2x + 1)

f-1 (x) = (5x + 3) / (1 – 2x)

Jawab: A

6. Diberikan f (x) = (5x – 5) / (x – 5), kebalikan dari fungsi f (x) f-1 (x) = …

A. (x – 5) / (5x – 5)

B. (x + 5) / (5x – 5)

C. (5x-1) / (5x-5)

D. (5x-5) / (x-5)

E. (5x – 5) / (x + 5)


6. Contoh soal fungsi invers dan pembahasannya kelas 10 brainly


diketahui

f(x) = 5x+10

ditanya

f invers x..

jawab

y = 5x+10 <---> 5x = y - 10

<---> x = (y-10) / 5

<---> f invers y = (y-10) / 5

maka f invers x = (x-10) / 5

semoga bermanfaat


7. contoh soal fungsi invers


invers matrik apa invers persamaan gan?

8. soal fungsi komposisi dan fungsi invers​


Jawab:

1. Jika  

f

(

x

)

=

a

x

+

b

maka  

f

(

z

)

=

a

z

+

b

atau  

f

(

g

(

x

)

)

=

a

g

(

x

)

+

b

(

f

g

)

(

x

)

=

f

(

g

(

x

)

)

(

f

g

)

1

(

x

)

=

(

g

1

f

1

)

(

x

)

(

f

1

f

)

(

x

)

=

I

(

x

)

(

f

1

)

1

(

x

)

=

f

(

x

)

Jika  

f

(

x

)

=

a

x

+

b

c

x

+

d

maka  

f

1

(

x

)

=

d

x

+

b

c

x

a

Jika  

f

(

a

)

=

b

maka  

f

1

(

b

)

=


9. contoh soal fungsi invers


1.f(x)=2x-4
2.f(x)=x2-4x+2

10. mengapa fungsi kuadrat tidak memiliki invers?


karena semua bilangan apabila dikuadratkan akan menghasilkan bilangan yang selalu positif.

11. soal cerita fungsi invers​


Jawab:

Penjelasan dengan langkah-langkah:

komposisi

soal

i)  f(x)= 2x- 1

ii) g(x) =x² - 3x

a. fungsi yang menyatakan jumlah kertas

=  g {f (x)}

= g (2x-1)

= (2x - 1)² - 3 (2x- 1)

=  4x² - 4x + 1 - 6x + 3

= 4x²  - 10x + 4

b) bahan  baku x= 4

banyak kertas = g{f(4)}

= g{2(4 )- 1}

= g(7)

= 7² - 3(7)

= 49 - 21

= 28 satuan


12. contoh soal fungsi invers dan jawaban


diketahui f(X)=-(2-3x)/2, maka fpangkat-1=
f(x)=-(2-3x)/2
f(x)=(-2+3x)/2
⇒y=(-2+3x)/2
⇒2y=-2+3x
⇒2y+2=3x
⇒x=(2y+2)/3
jadi fpangkat-1(x)=(2x+2)/3
⇒fpangkat-1(x)=2(x+1)/3
⇒fpangkat-1(x)=2/3(x+1)
jika g (x+1) = 2x - 1 dan f(g(x+1)) = 2x +4 maka f(0) = ...
pembahasan:
g(x+1) = 2x-1
f(g(x+1)) = 2x+4
maka f(2x-1) = 2x+4
misal 2x-1 = P maka x = (P+1)/2
maka f(P) = 2{(P+)/2} + 4
maka f(P) = P + 1 + 4
maka f(x) = x + 5

13. contoh soal fungsi invers


Jika f(x) = 2x - 6 maka fˉ¹(x) =

Pembahasan :
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan fˉ¹(x) dan f(x) diganti dengan x )

fˉ¹(x) = (x + 6) / 2
         = 1/2 x + 3

semoga dapat membantu

14. Latihan soal Fungsi Invers​


Jangan lupa bintang 5 dan like yah : )

......


15. 5 contoh soal fungsi invers beserta jawabannya ​


Jawab:

CONTOH SOAL:

Jika f(x) = x - 3 maka f-[tex]Pangkat 1[/tex](x)

A. x - 3

B. 3 - x

C. x + 3

D. x

Penjelasan dengan langkah-langkah:

JAWABAN : C. x + 3

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

[tex]= f(x) = x - 3\\= y = x - 3\\[/tex]

[tex]= x = y + 3\\= Ganti x menjadi fpangkat1 (x) dan y menjadi x sehingga diperoleh hasil f-pangkat1 (x) = x + 3[/tex]


16. contoh soal fungsi operasi aljabar pada fungsi,fungsi komposisi,fungsi invers


soal sbmptn fungsi komposisi invers

17. Berikan contoh soal menentukan invers dari fungsi komposisiMhon di jwab​


Jawaban:

jika f(x) = 3× + 2 dan g(x) = 4×2.maka ( f o g) (x) dan (g o f) (x) adalah...

maaf kalo salah


18. Contoh soal cerita dan pembahasan tentang fungsi invers


invers adalah kebalikan. Pada sebuah fungsi matematika jika kita ingin mencari salah satu variabel (mis: y) maka kita harus menginverskan fungsi tersebut. Invers juga disebut hukum kaus kaki, karena sama seperti kita membolak balikkan kaus kaki.

carilah invers dari
[tex]f(x) = \frac{3x - 9}{8 - 2x} [/tex]
semoga bermanfaat

19. apakah akar kuadrat merupakan kebalikan/invers dari kuadrat? jika iya berikan contohnya​


Jawaban:

ya

Penjelasan dengan langkah-langkah:

Beberapa contoh bilangan kuadrat sempurna di antaranya 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,dst


20. contoh soal dan pembahasanya tentang fungsi komposisi invers


Jawab:

Diketahui fungsi [tex]\displaystyle f(x)=\frac{x-2}{x+2}[/tex] dan [tex]\displaystyle g(x)=x+2[/tex], maka [tex]\displaystyle (f\circ g)^{-1}(x)=\cdots[/tex]

Penjelasan dengan langkah-langkah:

Cara pertama

Komposisikan kedua fungsi

[tex]\begin{aligned}(f\circ g)(x)&\:=f(g(x))\\\:&=f(x+2)\\\:&=\frac{x+2-2}{x+2+2}\\\:&=\frac{x}{x+4}\end{aligned}[/tex]

Invers kan

[tex]\begin{aligned}y&\:=\frac{x}{x+4}\\xy+4y\:&=x\\(y-1)x\:&=-4y\\x\:&=-\frac{4y}{y-1}\\(f\circ g)^{-1}(x)\:&=-\frac{4x}{x-1}\end{aligned}[/tex]

Cara kedua

Invers kan masing-masing fungsi

[tex]\begin{aligned}f(x)&\:=\frac{x-2}{x+2}\\y\:&=\frac{x-2}{x+2}\\xy+2y\:&=x-2\\(y-1)x\:&=-2(1+y)\\x\:&=-\frac{2(1+y)}{y-1}\\f^{-1}(x)\:&=-\frac{2(x+1)}{x-1}\end{aligned}[/tex]

dan

[tex]\begin{aligned}g(x)&\:=x+2\\y\:&=x+2\\x\:&=y-2\\g^{-1}(x)\:&=x-2\end{aligned}[/tex]

Berdasarkan kedua rumus

[tex]\displaystyle \boxed{\begin{matrix}(f\circ g)^{-1}(x)=\left ( g^{-1}\circ f^{-1} \right )(x)\\ (g\circ f)^{-1}(x)=\left ( f^{-1}\circ g^{-1} \right )(x)\end{matrix}}[/tex]

maka

[tex]\begin{aligned}(f\circ g)^{-1}(x)&\:=\left ( g^{-1}\circ f^{-1} \right )(x)\\\:&=g^{-1}\left ( f^{-1}(x) \right )\\\:&=g^{-1}\left ( \frac{-2x-2}{x-1} \right )\\\:&=\frac{-2x-2}{x-1}-2\\\:&=\frac{-2x-2-2(x-1)}{x-1}\\\:&=-\frac{4x}{x-1}\end{aligned}[/tex]


21. Soal Fungsi Invers….


3. f(x) = y

x + 3 = y

x = y - 3

f⁻¹(x) = x - 3

g(x) = y

-4x = y

x = -y/4

g⁻¹(x) = -x/4

h(x) = y

5x + 1 = y

5x = y - 1

[tex]x = \frac{y - 1}{5} \\ h {}^{ - 1} (x) = \frac{x - 1}{5} [/tex]

( f⁻¹ o g⁻¹ )(x) = f⁻¹[ g⁻¹(x) ]

= f⁻¹( -x/4 )

[tex] = - \frac{x - 3}{4} \\ = \frac{ - (x - 3)}{ 4} \\ = \frac{ - x + 3}{4} [/tex]

( ( f⁻¹ o g⁻¹ ) o h⁻¹ )(x) = ( f⁻¹ o g⁻¹ )[ h⁻¹(x) ]

[tex] = (f {}^{ - 1} og {}^{ - 1} )( \frac{x - 1}{5} ) \\ = \frac{ \frac{ - x + 3}{4} - 1}{5} \\ = \frac{ \frac{ - x + 3 - 4}{4} }{5} \\ = \frac{ \frac{ - x - 1}{4} }{5} \\ = \frac{ - x - 1}{4} \times \frac{1}{5} \\ = \frac{ - x - 1}{20} [/tex]


22. Coba berikan contoh soal dan penyelesaiannya 1. mencari nilai invers dari suatu fungsi


Maaf kalau salah maklum kerja sendiri

23. soal fungsi komposisi dan fungsi invers


ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers

24. Buatlah satu contoh soal fungsi invers yang memuat cara penyelesaian !


Penjelasan dengan langkah-langkah:

ada di lampiran


25. contoh fungsi invers


itu rumus cepat bisa dihafalin sih semoga membantu

26. berikan contoh soal dan penyelesaian tentang invers dari fungsi dan fungsi komposisi



fungsi komposisi:

1.diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:(f o g)(x) = g dimasukkan ke f menggantikan x(f o g)(x) = 3(2x)-4(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x(g o f)(x) = 2(3x-4)(g o f)(x) = 6x-8



27. contoh soal fungsi invers


0 2 2
0 0 2
0 0 0
adalah contoh invers

28. contoh soal fungsi invers dan jawabannya


Diketahui f(x) = -(2-3x) /2 , maka f-¹(x) sama dengan....

A. ⅔ (1 + x)
B. ⅔ (1 - x)
C. 3/2 (1 + x)
D. -⅔ (1 + x)
E. -3/2 (x - 1)

Pembahasan :
f(x) = -(2-3x) /2
f(x) = (-2+3x) /2

y = (-2+3x) /2
2y = -2+3x
2y + 2 = 3x
x = (2y+2) /3

Jadii..
f-¹(x) = (2x+2) /3
f-¹(x) = 2(x+1) /3
f-¹(x) = ⅔ (x + 1)...(A)


maav kalau salah

29. contoh soal fungsi invers


diketahui f(x)=-(2-3x)/2 maka f^-1(x)=

itu contoh soal fungsi invers


30. tolong buat contoh-contoh soal tentang fungsi invers beserta pembahasannya


y=f(x)=5x-7
jawab
y=5x-7
5x=y+7
x=y+7/5
x=f^-1(y)=y+7/5
jadi fungsi invers dari y=f(x)=5x-7 adalah f^-1(x)=x+7/5

31. contoh soal invers fungsi​


Jawaban:

Jika f(x) = x – 3 maka f-1(x) = …

A. x – 3

B. 3 – x

C. x + 3

D. x

E. 3

Pembahasan / penyelesaian soal

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = x – 3

y = x – 3

x = y + 3

Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3

Soal ini jawabannya C.

Contoh soal 2

Jika f(x) = 2 – 2x maka f-1(x) = …

A. 1 – 1/2x

B. 1/2 – x

C. 1/2x + 1

D. x + 1

E. x + 2

Penjelasan dengan langkah-langkah:

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = 2 – 2x

y = 2 – 2x

2x = 2 – y

x =

\frac {2 - y} {2}

ganti x = f-1(x) dan y = x sehingga diperoleh f-1(x) =

\frac {2 - x} {2} = 1 – 1/2x

Soal ini jawabannya A.

Contoh soal 3

Jika f(x) = 2x + 1 maka f-1(2) = …

A. 1/2

B. 1

C. 2

D. 3

E. 4

Pembahasan

y = 2x + 1

2x = y – 1

x =

\frac {y - 1} {2}

f-1(x) =

\frac {x - 1} {2}

f-1(2) =

\frac {2 - 1} {2} = 1/2

Soal ini jawabannya A.

mohon maaf kalau salah


32. contoh fungsi invers dan fungsi komposisi​


fungsi invers

f(x) =3x+5

y=3x+5

y-5=3x

y-5/3=x

inversnya = x-5/3


33. Rumus Fungsi Komposisi dan Fungsi Invers dan contoh soal


Saya foto ya catatan saya + latihan juga

tapi ga cukup slot fotonya


34. SOAL KOMPOSISI FUNGSI DAN FUNGSI INVERS


f(x) = 3x +5/3x -7
dirubah ke bentuk invers
y = 3x + 5 / 3x - 7
3xy - 7y = 3x + 5
3xy - 3x = 7y + 5
x (3y - 3) = 7y + 5
x = 7y+5/3y - 3

f ⁻¹(x) = 7x + 5/ 3x - 3

35. contoh fungsi invers



Misalnya anggap saja f sebuah fungsi dari himpunan A ke himpunan B. Bila dapat ditentukan sebuah fungsi g dari himpunan B ke himpunan A sedemikian, sehingga g(f(a)) = a dan f(f(b))=b untuk setiap a dalam A dan b dalam B, maka g disebut fungsi invers dari f dan bisa ditulis sebagai f-1.


36. contoh soal invers fungsi?​


Jawaban:

Jika f(x) = 2x – 6 maka f-1(x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1/2x – 3

D. -1/2x + 3

E. x – 12

Pembahasan

Agar dapat menentukan fungsi invers,maka harus dapat menentukan persamaan x-nya dahulu.

f(x) = 2x – 6

2x = f(x) + 6

x = f(x) + 6 / 2 (ubah x menjadi f-1(x) dan f(x) diganti dengan x)

f-1(x) = (x + 6) / 2 = 1/2 x + 3

Jawaban: B


37. contoh soal dan jawaban tentang fungsi invers


soal :
dik : matriks A ( 5 -7 ) maka A(pangkat)-1 =……
( 3 -4 )


jawab :
1/-20-(-21) (-4 7) = 1/1 (-4 7) = (-4 7)
(-3 5) (-3 5) (-3 5)

38. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?


Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51

39. contoh fungsi invers


F(x) = 2x+5 , f⁻¹(x)=....

y=2x+5  
-2x = 5-y
2x = y-5
 x = y - 5 
         2
f⁻¹(x) = x-5
             2
      

40. Kak kaka coba dong buatin contoh soal fungsi invers dan pembahasanya


Semoga membantu...... ☺

Video Terkait

Kategori biologi