apa itu invers fungsi? berikan satu contoh soal invers fungsi
1. apa itu invers fungsi? berikan satu contoh soal invers fungsi
Jawaban:
menurut Wikipedia invers fungsi adalah Fungsi Invers adalah fungsi yang merupakan kebalikan aksi dari suatu fungsi.
Penjelasan dengan langkah-langkah:
contoh soal invers fungsi
Diketahui f(x) = x2 – 3x dan g(x) = 2x + 1. Tentukan (f – g)(x).
Jawab:
(f – g)(x) = f(x) – g(x)
(f – g)(x)= x2 – 3x – (2x + 1)
(f – g)(x)= x2 – 3x – 2x – 1
(f – g)(x)= x2 – 5x – 1
Jawaban:
invers fungsi adalah kebalikan dr suatu fungsi. biasanya disimbolkan dg tanda (^-1) pd fungsi yg akan di invers.
Contoh :
Tentukan invers dari :
a. f(x) = x + 2
b. f(x) = 3x + 1 / 2x - 3
c. f(x) = x² - 2x + 1
Jawab :
a. f(x) = x + 2
invers,
f(x) = y
y = x + 2
x = y - 2
f-¹(x) = x - 2
b. f(x) = 3x + 1 / 2x - 3
invers,
f(x) = y
y = 3x + 1 / 2x - 3
y(2x - 3) = 3x + 1
2xy - 3y = 3x + 1
2xy - 3x = 3y + 1
x(2y - 3) = 3y + 1
x = 3y + 1 / 2y - 3
f-¹(x) = 3x + 1 / 2x - 3
c. f(x) = x² - 2x + 1
invers,
f(x) = y
y = x² - 2x + 1
y = (x - 1)²
(x - 1) = √y
x = 1 ± √y
f-¹(x) = 1 ± √x
2. contoh soal fungsi invers
Dik : f(x) = -(2-3x) / 2, tentukan fungsi invers nya........
3. contoh soal fungsi invers
1.f(x)=2x-4
2.f(x)=x2-4x+2
4. Latihan soal Fungsi Invers
Jangan lupa bintang 5 dan like yah : )
......
5. Contoh soal cerita dan pembahasan tentang fungsi invers
invers adalah kebalikan. Pada sebuah fungsi matematika jika kita ingin mencari salah satu variabel (mis: y) maka kita harus menginverskan fungsi tersebut. Invers juga disebut hukum kaus kaki, karena sama seperti kita membolak balikkan kaus kaki.
carilah invers dari
[tex]f(x) = \frac{3x - 9}{8 - 2x} [/tex]
semoga bermanfaat
6. contoh soal dan jawaban tentang fungsi invers
soal :
dik : matriks A ( 5 -7 ) maka A(pangkat)-1 =……
( 3 -4 )
jawab :
1/-20-(-21) (-4 7) = 1/1 (-4 7) = (-4 7)
(-3 5) (-3 5) (-3 5)
7. Rumus Fungsi Komposisi dan Fungsi Invers dan contoh soal
Saya foto ya catatan saya + latihan juga
tapi ga cukup slot fotonya
8. Contoh soal fungsi invers dan pembahasannya kelas 10 brainly
diketahui
f(x) = 5x+10
ditanya
f invers x..
jawab
y = 5x+10 <---> 5x = y - 10
<---> x = (y-10) / 5
<---> f invers y = (y-10) / 5
maka f invers x = (x-10) / 5
semoga bermanfaat
9. contoh soal dan pembahasanya tentang fungsi komposisi invers
Jawab:
Diketahui fungsi [tex]\displaystyle f(x)=\frac{x-2}{x+2}[/tex] dan [tex]\displaystyle g(x)=x+2[/tex], maka [tex]\displaystyle (f\circ g)^{-1}(x)=\cdots[/tex]
Penjelasan dengan langkah-langkah:
Cara pertama
Komposisikan kedua fungsi
[tex]\begin{aligned}(f\circ g)(x)&\:=f(g(x))\\\:&=f(x+2)\\\:&=\frac{x+2-2}{x+2+2}\\\:&=\frac{x}{x+4}\end{aligned}[/tex]
Invers kan
[tex]\begin{aligned}y&\:=\frac{x}{x+4}\\xy+4y\:&=x\\(y-1)x\:&=-4y\\x\:&=-\frac{4y}{y-1}\\(f\circ g)^{-1}(x)\:&=-\frac{4x}{x-1}\end{aligned}[/tex]
Cara kedua
Invers kan masing-masing fungsi
[tex]\begin{aligned}f(x)&\:=\frac{x-2}{x+2}\\y\:&=\frac{x-2}{x+2}\\xy+2y\:&=x-2\\(y-1)x\:&=-2(1+y)\\x\:&=-\frac{2(1+y)}{y-1}\\f^{-1}(x)\:&=-\frac{2(x+1)}{x-1}\end{aligned}[/tex]
dan
[tex]\begin{aligned}g(x)&\:=x+2\\y\:&=x+2\\x\:&=y-2\\g^{-1}(x)\:&=x-2\end{aligned}[/tex]
Berdasarkan kedua rumus
[tex]\displaystyle \boxed{\begin{matrix}(f\circ g)^{-1}(x)=\left ( g^{-1}\circ f^{-1} \right )(x)\\ (g\circ f)^{-1}(x)=\left ( f^{-1}\circ g^{-1} \right )(x)\end{matrix}}[/tex]
maka
[tex]\begin{aligned}(f\circ g)^{-1}(x)&\:=\left ( g^{-1}\circ f^{-1} \right )(x)\\\:&=g^{-1}\left ( f^{-1}(x) \right )\\\:&=g^{-1}\left ( \frac{-2x-2}{x-1} \right )\\\:&=\frac{-2x-2}{x-1}-2\\\:&=\frac{-2x-2-2(x-1)}{x-1}\\\:&=-\frac{4x}{x-1}\end{aligned}[/tex]
10. contoh soal fungsi operasi aljabar pada fungsi,fungsi komposisi,fungsi invers
soal sbmptn fungsi komposisi invers
11. soal fungsi komposisi dan fungsi invers
Jawab:
1. Jika
f
(
x
)
=
a
x
+
b
maka
f
(
z
)
=
a
⋅
z
+
b
atau
f
(
g
(
x
)
)
=
a
⋅
g
(
x
)
+
b
(
f
∘
g
)
(
x
)
=
f
(
g
(
x
)
)
(
f
∘
g
)
−
1
(
x
)
=
(
g
−
1
∘
f
−
1
)
(
x
)
(
f
−
1
∘
f
)
(
x
)
=
I
(
x
)
(
f
−
1
)
−
1
(
x
)
=
f
(
x
)
Jika
f
(
x
)
=
a
x
+
b
c
x
+
d
maka
f
−
1
(
x
)
=
−
d
x
+
b
c
x
−
a
Jika
f
(
a
)
=
b
maka
f
−
1
(
b
)
=
12. Soal Fungsi Invers….
3. f(x) = y
x + 3 = y
x = y - 3
f⁻¹(x) = x - 3
g(x) = y
-4x = y
x = -y/4
g⁻¹(x) = -x/4
h(x) = y
5x + 1 = y
5x = y - 1
[tex]x = \frac{y - 1}{5} \\ h {}^{ - 1} (x) = \frac{x - 1}{5} [/tex]
( f⁻¹ o g⁻¹ )(x) = f⁻¹[ g⁻¹(x) ]
= f⁻¹( -x/4 )
[tex] = - \frac{x - 3}{4} \\ = \frac{ - (x - 3)}{ 4} \\ = \frac{ - x + 3}{4} [/tex]
( ( f⁻¹ o g⁻¹ ) o h⁻¹ )(x) = ( f⁻¹ o g⁻¹ )[ h⁻¹(x) ]
[tex] = (f {}^{ - 1} og {}^{ - 1} )( \frac{x - 1}{5} ) \\ = \frac{ \frac{ - x + 3}{4} - 1}{5} \\ = \frac{ \frac{ - x + 3 - 4}{4} }{5} \\ = \frac{ \frac{ - x - 1}{4} }{5} \\ = \frac{ - x - 1}{4} \times \frac{1}{5} \\ = \frac{ - x - 1}{20} [/tex]
13. tolong buat contoh-contoh soal tentang fungsi invers beserta pembahasannya
y=f(x)=5x-7
jawab
y=5x-7
5x=y+7
x=y+7/5
x=f^-1(y)=y+7/5
jadi fungsi invers dari y=f(x)=5x-7 adalah f^-1(x)=x+7/5
14. contoh fungsi invers
Misalnya anggap saja f sebuah fungsi dari himpunan A ke himpunan B. Bila dapat ditentukan sebuah fungsi g dari himpunan B ke himpunan A sedemikian, sehingga g(f(a)) = a dan f(f(b))=b untuk setiap a dalam A dan b dalam B, maka g disebut fungsi invers dari f dan bisa ditulis sebagai f-1.
15. soal fungsi komposisi dan fungsi invers
ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers
16. contoh soal fungsi invers dan jawaban
diketahui f(X)=-(2-3x)/2, maka fpangkat-1=
f(x)=-(2-3x)/2
f(x)=(-2+3x)/2
⇒y=(-2+3x)/2
⇒2y=-2+3x
⇒2y+2=3x
⇒x=(2y+2)/3
jadi fpangkat-1(x)=(2x+2)/3
⇒fpangkat-1(x)=2(x+1)/3
⇒fpangkat-1(x)=2/3(x+1)
jika g (x+1) = 2x - 1 dan f(g(x+1)) = 2x +4 maka f(0) = ...
pembahasan:
g(x+1) = 2x-1
f(g(x+1)) = 2x+4
maka f(2x-1) = 2x+4
misal 2x-1 = P maka x = (P+1)/2
maka f(P) = 2{(P+)/2} + 4
maka f(P) = P + 1 + 4
maka f(x) = x + 5
17. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?
Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51
18. contoh soal fungsi invers
0 2 2
0 0 2
0 0 0
adalah contoh invers
19. Invers fungsi bentuk pecahan
Jawab:
Penjelasan dengan langkah-langkah:
fungsi rasional linier
fungsi invers
__
soal
[tex]\sf jika~ ~ f(x)= \dfrac{ax+b}{cx+d}\\\\\\f^{-1}(x)= \dfrac{dx- b}{- cx+a}~ ~ atau ~~ f^{-1}(x) = \dfrac{b -dx}{cx- a}[/tex]
20. contoh soal fungsi invers dan jawabannya
Diketahui f(x) = -(2-3x) /2 , maka f-¹(x) sama dengan....
A. ⅔ (1 + x)
B. ⅔ (1 - x)
C. 3/2 (1 + x)
D. -⅔ (1 + x)
E. -3/2 (x - 1)
Pembahasan :
f(x) = -(2-3x) /2
f(x) = (-2+3x) /2
y = (-2+3x) /2
2y = -2+3x
2y + 2 = 3x
x = (2y+2) /3
Jadii..
f-¹(x) = (2x+2) /3
f-¹(x) = 2(x+1) /3
f-¹(x) = ⅔ (x + 1)...(A)
maav kalau salah
21. contoh soal fungsi invers
diketahui f(x)=-(2-3x)/2 maka f^-1(x)=
itu contoh soal fungsi invers
22. berikan contoh soal dan penyelesaian tentang invers dari fungsi dan fungsi komposisi
fungsi komposisi:
1.diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:(f o g)(x) = g dimasukkan ke f menggantikan x(f o g)(x) = 3(2x)-4(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x(g o f)(x) = 2(3x-4)(g o f)(x) = 6x-8
23. contoh soal invers fungsi
Jawaban:
Jika f(x) = x – 3 maka f-1(x) = …
A. x – 3
B. 3 – x
C. x + 3
D. x
E. 3
Pembahasan / penyelesaian soal
Misalkan f(x) = y maka diperoleh hasil sebagai berikut:
f(x) = x – 3
y = x – 3
x = y + 3
Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3
Soal ini jawabannya C.
Contoh soal 2
Jika f(x) = 2 – 2x maka f-1(x) = …
A. 1 – 1/2x
B. 1/2 – x
C. 1/2x + 1
D. x + 1
E. x + 2
Penjelasan dengan langkah-langkah:
Misalkan f(x) = y maka diperoleh hasil sebagai berikut:
f(x) = 2 – 2x
y = 2 – 2x
2x = 2 – y
x =
\frac {2 - y} {2}
ganti x = f-1(x) dan y = x sehingga diperoleh f-1(x) =
\frac {2 - x} {2} = 1 – 1/2x
Soal ini jawabannya A.
Contoh soal 3
Jika f(x) = 2x + 1 maka f-1(2) = …
A. 1/2
B. 1
C. 2
D. 3
E. 4
Pembahasan
y = 2x + 1
2x = y – 1
x =
\frac {y - 1} {2}
f-1(x) =
\frac {x - 1} {2}
f-1(2) =
\frac {2 - 1} {2} = 1/2
Soal ini jawabannya A.
mohon maaf kalau salah
24. soal cerita fungsi invers
Jawab:
Penjelasan dengan langkah-langkah:
komposisi
soal
i) f(x)= 2x- 1
ii) g(x) =x² - 3x
a. fungsi yang menyatakan jumlah kertas
= g {f (x)}
= g (2x-1)
= (2x - 1)² - 3 (2x- 1)
= 4x² - 4x + 1 - 6x + 3
= 4x² - 10x + 4
b) bahan baku x= 4
banyak kertas = g{f(4)}
= g{2(4 )- 1}
= g(7)
= 7² - 3(7)
= 49 - 21
= 28 satuan
25. soal tentang invers fungsi
Jawab:
Penjelasan dengan langkah-langkah:
Ada di foto
26. Kak kaka coba dong buatin contoh soal fungsi invers dan pembahasanya
Semoga membantu...... ☺
27. buatlah 5 contoh soal fungsi invers dan penyelesainnya
Jawaban:
1. Jika f (x) = 2x – 6, maka f-1 (x) = …
A. 1/2 x – 3
B. 1/2 x + 3
C. -1 / 2x – 3
D. -1 / 2x + 3
E. x – 12
Diskusi
Untuk menentukan fungsi invers, Anda harus terlebih dahulu menentukan persamaan x.
f (x) = 2x – 6
2x = f (x) + 6
x = f (x) + 6/2 (perubahan x ke f-1 (x) dan f (x) digantikan oleh x)
Jawab: B
2. Jika f (x) = 5 – 1 / 3x, maka f-1 (x) = …
A. 3x + 15
B. 3x – 15
C. -3x + 15
D. -3x – 15
E. -3x + 5/3
Diskusi
f (x) = 5-1 / 3x
1 / 3x = 5 – f (x)
x = (5 – f (x)). 3
x = 15 – 3 f (x)
f-1 (x) = -3x + 15
Jawab: C
3. Jika f (x) = (x + 3) / (x – 2), f-1 (x) = …
A. (2x + 3) / (x – 1)
B. (x – 3) / (x + 2)
C. (2x + 3) / (x +1)
D. (-2x + 3) / (x + 1)
E. (-x + 3) / (x – 2)
Diskusi:
Langkah 1:
Biarkan f (x) = y
y. = (x + 3) atau (x – 2)
y (x – 2) = x + 3
yx – 2y = x + 3
yx – x = 2thn + 3
x (y – 1) = 2y + 3
x = (2y + 3) / (y – 1) Kemudian ganti x dengan f-1 (x) dan y dengan x
f-1 (x) = (2x + 3) / (x-1)
Langkah 2:
Jika f (x) = (kapak + b) / (cx + d) Jadif-1 (x) = (-dx + b) / (cx-a))
Kemudian kita bisa bertukar tempat dan mengganti karakter 1 dengan -2.
f-1 (x) = (2x + 3) / (x-1)
Jawab: A
4. Jika f (x) = 2x / (x – 1), maka f-1 (1) = …
A. -1
B. 0
C. 1
D. 2
E. 3
Diskusi
Pertama tentukan f-1 (x)
y = 2x / (x – 1)
y (x – 1) = 2x
yx – y = 2x
yx – 2x = y
x (y – 2) = y
x = y / (y – 2)
f-1 (x) = x / (x – 2)
f-1 ((1)) = 1 / (1-2) = -1
Jawab: A
5. Invers didefinisikan sebagai f (x) = (x – 3) / (2x + 5), x ≠ – 5/2 dan f-1 (x) adalah kebalikan dari fungsi f (x). Rumus f-1 (x) adalah …
A. (5x + 3) / (1 – 2x)
B. (5x – 3) / (1 – 2x)
C. (5x + 3) / (2x + 1)
D. (2x + 3) / (5x + 5)
E. (2x – 3) / (5x + 5)
Diskusi
f (x) = (x – 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:
f – 0,1 (x) = (-dx + b) / (cx – a)
f-1 (x) = (-5x – 3) / (2x -1) atau pembilang dan penyebut – (min)
f-1 (x) = (5x + 3) / (-2x + 1)
f-1 (x) = (5x + 3) / (1 – 2x)
Jawab: A
6. Diberikan f (x) = (5x – 5) / (x – 5), kebalikan dari fungsi f (x) f-1 (x) = …
A. (x – 5) / (5x – 5)
B. (x + 5) / (5x – 5)
C. (5x-1) / (5x-5)
D. (5x-5) / (x-5)
E. (5x – 5) / (x + 5)
28. contoh fungsi invers
F(x) = 2x+5 , f⁻¹(x)=....
y=2x+5
-2x = 5-y
2x = y-5
x = y - 5
2
f⁻¹(x) = x-5
2
29. contoh fungsi invers
itu rumus cepat bisa dihafalin sih semoga membantu
30. contoh soal fungsi invers
invers matrik apa invers persamaan gan?
31. Coba berikan contoh soal dan penyelesaiannya 1. mencari nilai invers dari suatu fungsi
Maaf kalau salah maklum kerja sendiri
32. 5 contoh soal fungsi invers beserta jawabannya
Jawab:
CONTOH SOAL:
Jika f(x) = x - 3 maka f-[tex]Pangkat 1[/tex](x)
A. x - 3
B. 3 - x
C. x + 3
D. x
Penjelasan dengan langkah-langkah:
JAWABAN : C. x + 3
Misalkan f(x) = y maka diperoleh hasil sebagai berikut:
[tex]= f(x) = x - 3\\= y = x - 3\\[/tex]
[tex]= x = y + 3\\= Ganti x menjadi fpangkat1 (x) dan y menjadi x sehingga diperoleh hasil f-pangkat1 (x) = x + 3[/tex]
33. contoh soal invers fungsi?
Jawaban:
Jika f(x) = 2x – 6 maka f-1(x) = …
A. 1/2 x – 3
B. 1/2 x + 3
C. -1/2x – 3
D. -1/2x + 3
E. x – 12
Pembahasan
Agar dapat menentukan fungsi invers,maka harus dapat menentukan persamaan x-nya dahulu.
f(x) = 2x – 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ubah x menjadi f-1(x) dan f(x) diganti dengan x)
f-1(x) = (x + 6) / 2 = 1/2 x + 3
Jawaban: B
34. Buatlah satu contoh soal fungsi invers yang memuat cara penyelesaian !
Penjelasan dengan langkah-langkah:
ada di lampiran
35. contoh soal fungsi invers
Jika f(x) = 2x - 6 maka fˉ¹(x) =
Pembahasan :
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan fˉ¹(x) dan f(x) diganti dengan x )fˉ¹(x) = (x + 6) / 2
= 1/2 x + 3
semoga dapat membantu
36. SOAL KOMPOSISI FUNGSI DAN FUNGSI INVERS
f(x) = 3x +5/3x -7
dirubah ke bentuk invers
y = 3x + 5 / 3x - 7
3xy - 7y = 3x + 5
3xy - 3x = 7y + 5
x (3y - 3) = 7y + 5
x = 7y+5/3y - 3
f ⁻¹(x) = 7x + 5/ 3x - 3
37. Berikan contoh soal menentukan invers dari fungsi komposisiMhon di jwab
Jawaban:
jika f(x) = 3× + 2 dan g(x) = 4×2.maka ( f o g) (x) dan (g o f) (x) adalah...
maaf kalo salah
38. fungsi invers bentuk pecahan
fungsi inver bentuk pecahan adalah utk mendapatkan sekawan dari pecahan tersebut sehingga mudah untuk menyederhanakannya.
39. contoh fungsi invers dan fungsi komposisi
fungsi invers
f(x) =3x+5
y=3x+5
y-5=3x
y-5/3=x
inversnya = x-5/3
40. buatlah contoh penyelesaian cara cepat fungsi invers yang bentuk biasa dan pecahan
bilangan genap bilangan ganjil