Contoh Soal Fungsi Invers Pecahan

Contoh Soal Fungsi Invers Pecahan

apa itu invers fungsi? berikan satu contoh soal invers fungsi ​

Daftar Isi

1. apa itu invers fungsi? berikan satu contoh soal invers fungsi ​


Jawaban:

menurut Wikipedia invers fungsi adalah Fungsi Invers adalah fungsi yang merupakan kebalikan aksi dari suatu fungsi.

Penjelasan dengan langkah-langkah:

contoh soal invers fungsi

Diketahui f(x) = x2 – 3x dan g(x) = 2x + 1. Tentukan (f – g)(x).

Jawab:

(f – g)(x) = f(x) – g(x)

(f – g)(x)= x2 – 3x – (2x + 1)

(f – g)(x)= x2 – 3x – 2x – 1

(f – g)(x)= x2 – 5x – 1

Jawaban:

invers fungsi adalah kebalikan dr suatu fungsi. biasanya disimbolkan dg tanda (^-1) pd fungsi yg akan di invers.

Contoh :

Tentukan invers dari :

a. f(x) = x + 2

b. f(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

Jawab :

a. f(x) = x + 2

invers,

f(x) = y

y = x + 2

x = y - 2

f-¹(x) = x - 2

b. f(x) = 3x + 1 / 2x - 3

invers,

f(x) = y

y = 3x + 1 / 2x - 3

y(2x - 3) = 3x + 1

2xy - 3y = 3x + 1

2xy - 3x = 3y + 1

x(2y - 3) = 3y + 1

x = 3y + 1 / 2y - 3

f-¹(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

invers,

f(x) = y

y = x² - 2x + 1

y = (x - 1)²

(x - 1) = √y

x = 1 ± √y

f-¹(x) = 1 ± √x


2. contoh soal fungsi invers


Dik : f(x) = -(2-3x) / 2, tentukan fungsi invers nya........

3. contoh soal fungsi invers


1.f(x)=2x-4
2.f(x)=x2-4x+2

4. Latihan soal Fungsi Invers​


Jangan lupa bintang 5 dan like yah : )

......


5. Contoh soal cerita dan pembahasan tentang fungsi invers


invers adalah kebalikan. Pada sebuah fungsi matematika jika kita ingin mencari salah satu variabel (mis: y) maka kita harus menginverskan fungsi tersebut. Invers juga disebut hukum kaus kaki, karena sama seperti kita membolak balikkan kaus kaki.

carilah invers dari
[tex]f(x) = \frac{3x - 9}{8 - 2x} [/tex]
semoga bermanfaat

6. contoh soal dan jawaban tentang fungsi invers


soal :
dik : matriks A ( 5 -7 ) maka A(pangkat)-1 =……
( 3 -4 )


jawab :
1/-20-(-21) (-4 7) = 1/1 (-4 7) = (-4 7)
(-3 5) (-3 5) (-3 5)

7. Rumus Fungsi Komposisi dan Fungsi Invers dan contoh soal


Saya foto ya catatan saya + latihan juga

tapi ga cukup slot fotonya


8. Contoh soal fungsi invers dan pembahasannya kelas 10 brainly


diketahui

f(x) = 5x+10

ditanya

f invers x..

jawab

y = 5x+10 <---> 5x = y - 10

<---> x = (y-10) / 5

<---> f invers y = (y-10) / 5

maka f invers x = (x-10) / 5

semoga bermanfaat


9. contoh soal dan pembahasanya tentang fungsi komposisi invers


Jawab:

Diketahui fungsi [tex]\displaystyle f(x)=\frac{x-2}{x+2}[/tex] dan [tex]\displaystyle g(x)=x+2[/tex], maka [tex]\displaystyle (f\circ g)^{-1}(x)=\cdots[/tex]

Penjelasan dengan langkah-langkah:

Cara pertama

Komposisikan kedua fungsi

[tex]\begin{aligned}(f\circ g)(x)&\:=f(g(x))\\\:&=f(x+2)\\\:&=\frac{x+2-2}{x+2+2}\\\:&=\frac{x}{x+4}\end{aligned}[/tex]

Invers kan

[tex]\begin{aligned}y&\:=\frac{x}{x+4}\\xy+4y\:&=x\\(y-1)x\:&=-4y\\x\:&=-\frac{4y}{y-1}\\(f\circ g)^{-1}(x)\:&=-\frac{4x}{x-1}\end{aligned}[/tex]

Cara kedua

Invers kan masing-masing fungsi

[tex]\begin{aligned}f(x)&\:=\frac{x-2}{x+2}\\y\:&=\frac{x-2}{x+2}\\xy+2y\:&=x-2\\(y-1)x\:&=-2(1+y)\\x\:&=-\frac{2(1+y)}{y-1}\\f^{-1}(x)\:&=-\frac{2(x+1)}{x-1}\end{aligned}[/tex]

dan

[tex]\begin{aligned}g(x)&\:=x+2\\y\:&=x+2\\x\:&=y-2\\g^{-1}(x)\:&=x-2\end{aligned}[/tex]

Berdasarkan kedua rumus

[tex]\displaystyle \boxed{\begin{matrix}(f\circ g)^{-1}(x)=\left ( g^{-1}\circ f^{-1} \right )(x)\\ (g\circ f)^{-1}(x)=\left ( f^{-1}\circ g^{-1} \right )(x)\end{matrix}}[/tex]

maka

[tex]\begin{aligned}(f\circ g)^{-1}(x)&\:=\left ( g^{-1}\circ f^{-1} \right )(x)\\\:&=g^{-1}\left ( f^{-1}(x) \right )\\\:&=g^{-1}\left ( \frac{-2x-2}{x-1} \right )\\\:&=\frac{-2x-2}{x-1}-2\\\:&=\frac{-2x-2-2(x-1)}{x-1}\\\:&=-\frac{4x}{x-1}\end{aligned}[/tex]


10. contoh soal fungsi operasi aljabar pada fungsi,fungsi komposisi,fungsi invers


soal sbmptn fungsi komposisi invers

11. soal fungsi komposisi dan fungsi invers​


Jawab:

1. Jika  

f

(

x

)

=

a

x

+

b

maka  

f

(

z

)

=

a

z

+

b

atau  

f

(

g

(

x

)

)

=

a

g

(

x

)

+

b

(

f

g

)

(

x

)

=

f

(

g

(

x

)

)

(

f

g

)

1

(

x

)

=

(

g

1

f

1

)

(

x

)

(

f

1

f

)

(

x

)

=

I

(

x

)

(

f

1

)

1

(

x

)

=

f

(

x

)

Jika  

f

(

x

)

=

a

x

+

b

c

x

+

d

maka  

f

1

(

x

)

=

d

x

+

b

c

x

a

Jika  

f

(

a

)

=

b

maka  

f

1

(

b

)

=


12. Soal Fungsi Invers….


3. f(x) = y

x + 3 = y

x = y - 3

f⁻¹(x) = x - 3

g(x) = y

-4x = y

x = -y/4

g⁻¹(x) = -x/4

h(x) = y

5x + 1 = y

5x = y - 1

[tex]x = \frac{y - 1}{5} \\ h {}^{ - 1} (x) = \frac{x - 1}{5} [/tex]

( f⁻¹ o g⁻¹ )(x) = f⁻¹[ g⁻¹(x) ]

= f⁻¹( -x/4 )

[tex] = - \frac{x - 3}{4} \\ = \frac{ - (x - 3)}{ 4} \\ = \frac{ - x + 3}{4} [/tex]

( ( f⁻¹ o g⁻¹ ) o h⁻¹ )(x) = ( f⁻¹ o g⁻¹ )[ h⁻¹(x) ]

[tex] = (f {}^{ - 1} og {}^{ - 1} )( \frac{x - 1}{5} ) \\ = \frac{ \frac{ - x + 3}{4} - 1}{5} \\ = \frac{ \frac{ - x + 3 - 4}{4} }{5} \\ = \frac{ \frac{ - x - 1}{4} }{5} \\ = \frac{ - x - 1}{4} \times \frac{1}{5} \\ = \frac{ - x - 1}{20} [/tex]


13. tolong buat contoh-contoh soal tentang fungsi invers beserta pembahasannya


y=f(x)=5x-7
jawab
y=5x-7
5x=y+7
x=y+7/5
x=f^-1(y)=y+7/5
jadi fungsi invers dari y=f(x)=5x-7 adalah f^-1(x)=x+7/5

14. contoh fungsi invers



Misalnya anggap saja f sebuah fungsi dari himpunan A ke himpunan B. Bila dapat ditentukan sebuah fungsi g dari himpunan B ke himpunan A sedemikian, sehingga g(f(a)) = a dan f(f(b))=b untuk setiap a dalam A dan b dalam B, maka g disebut fungsi invers dari f dan bisa ditulis sebagai f-1.


15. soal fungsi komposisi dan fungsi invers


ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers

16. contoh soal fungsi invers dan jawaban


diketahui f(X)=-(2-3x)/2, maka fpangkat-1=
f(x)=-(2-3x)/2
f(x)=(-2+3x)/2
⇒y=(-2+3x)/2
⇒2y=-2+3x
⇒2y+2=3x
⇒x=(2y+2)/3
jadi fpangkat-1(x)=(2x+2)/3
⇒fpangkat-1(x)=2(x+1)/3
⇒fpangkat-1(x)=2/3(x+1)
jika g (x+1) = 2x - 1 dan f(g(x+1)) = 2x +4 maka f(0) = ...
pembahasan:
g(x+1) = 2x-1
f(g(x+1)) = 2x+4
maka f(2x-1) = 2x+4
misal 2x-1 = P maka x = (P+1)/2
maka f(P) = 2{(P+)/2} + 4
maka f(P) = P + 1 + 4
maka f(x) = x + 5

17. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?


Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51

18. contoh soal fungsi invers


0 2 2
0 0 2
0 0 0
adalah contoh invers

19. Invers fungsi bentuk pecahan


Jawab:

Penjelasan dengan langkah-langkah:

fungsi rasional linier

fungsi invers

__

soal

[tex]\sf jika~ ~ f(x)= \dfrac{ax+b}{cx+d}\\\\\\f^{-1}(x)= \dfrac{dx- b}{- cx+a}~ ~ atau ~~ f^{-1}(x) = \dfrac{b -dx}{cx- a}[/tex]


20. contoh soal fungsi invers dan jawabannya


Diketahui f(x) = -(2-3x) /2 , maka f-¹(x) sama dengan....

A. ⅔ (1 + x)
B. ⅔ (1 - x)
C. 3/2 (1 + x)
D. -⅔ (1 + x)
E. -3/2 (x - 1)

Pembahasan :
f(x) = -(2-3x) /2
f(x) = (-2+3x) /2

y = (-2+3x) /2
2y = -2+3x
2y + 2 = 3x
x = (2y+2) /3

Jadii..
f-¹(x) = (2x+2) /3
f-¹(x) = 2(x+1) /3
f-¹(x) = ⅔ (x + 1)...(A)


maav kalau salah

21. contoh soal fungsi invers


diketahui f(x)=-(2-3x)/2 maka f^-1(x)=

itu contoh soal fungsi invers


22. berikan contoh soal dan penyelesaian tentang invers dari fungsi dan fungsi komposisi



fungsi komposisi:

1.diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:(f o g)(x) = g dimasukkan ke f menggantikan x(f o g)(x) = 3(2x)-4(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x(g o f)(x) = 2(3x-4)(g o f)(x) = 6x-8



23. contoh soal invers fungsi​


Jawaban:

Jika f(x) = x – 3 maka f-1(x) = …

A. x – 3

B. 3 – x

C. x + 3

D. x

E. 3

Pembahasan / penyelesaian soal

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = x – 3

y = x – 3

x = y + 3

Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3

Soal ini jawabannya C.

Contoh soal 2

Jika f(x) = 2 – 2x maka f-1(x) = …

A. 1 – 1/2x

B. 1/2 – x

C. 1/2x + 1

D. x + 1

E. x + 2

Penjelasan dengan langkah-langkah:

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = 2 – 2x

y = 2 – 2x

2x = 2 – y

x =

\frac {2 - y} {2}

ganti x = f-1(x) dan y = x sehingga diperoleh f-1(x) =

\frac {2 - x} {2} = 1 – 1/2x

Soal ini jawabannya A.

Contoh soal 3

Jika f(x) = 2x + 1 maka f-1(2) = …

A. 1/2

B. 1

C. 2

D. 3

E. 4

Pembahasan

y = 2x + 1

2x = y – 1

x =

\frac {y - 1} {2}

f-1(x) =

\frac {x - 1} {2}

f-1(2) =

\frac {2 - 1} {2} = 1/2

Soal ini jawabannya A.

mohon maaf kalau salah


24. soal cerita fungsi invers​


Jawab:

Penjelasan dengan langkah-langkah:

komposisi

soal

i)  f(x)= 2x- 1

ii) g(x) =x² - 3x

a. fungsi yang menyatakan jumlah kertas

=  g {f (x)}

= g (2x-1)

= (2x - 1)² - 3 (2x- 1)

=  4x² - 4x + 1 - 6x + 3

= 4x²  - 10x + 4

b) bahan  baku x= 4

banyak kertas = g{f(4)}

= g{2(4 )- 1}

= g(7)

= 7² - 3(7)

= 49 - 21

= 28 satuan


25. soal tentang invers fungsi​


Jawab:

Penjelasan dengan langkah-langkah:

Ada di foto


26. Kak kaka coba dong buatin contoh soal fungsi invers dan pembahasanya


Semoga membantu...... ☺

27. buatlah 5 contoh soal fungsi invers dan penyelesainnya​


Jawaban:

1. Jika f (x) = 2x – 6, maka f-1 (x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1 / 2x – 3

D. -1 / 2x + 3

E. x – 12

Diskusi

Untuk menentukan fungsi invers, Anda harus terlebih dahulu menentukan persamaan x.

f (x) = 2x – 6

2x = f (x) + 6

x = f (x) + 6/2 (perubahan x ke f-1 (x) dan f (x) digantikan oleh x)

Jawab: B

2. Jika f (x) = 5 – 1 / 3x, maka f-1 (x) = …

A. 3x + 15

B. 3x – 15

C. -3x + 15

D. -3x – 15

E. -3x + 5/3

Diskusi

f (x) = 5-1 / 3x

1 / 3x = 5 – f (x)

x = (5 – f (x)). 3

x = 15 – 3 f (x)

f-1 (x) = -3x + 15

Jawab: C

3. Jika f (x) = (x + 3) / (x – 2), f-1 (x) = …

A. (2x + 3) / (x – 1)

B. (x – 3) / (x + 2)

C. (2x + 3) / (x +1)

D. (-2x + 3) / (x + 1)

E. (-x + 3) / (x – 2)

Diskusi:

Langkah 1:

Biarkan f (x) = y

y. = (x + 3) atau (x – 2)

y (x – 2) = x + 3

yx – 2y = x + 3

yx – x = 2thn + 3

x (y – 1) = 2y + 3

x = (2y + 3) / (y – 1) Kemudian ganti x dengan f-1 (x) dan y dengan x

f-1 (x) = (2x + 3) / (x-1)

Langkah 2:

Jika f (x) = (kapak + b) / (cx + d) Jadif-1 (x) = (-dx + b) / (cx-a))

Kemudian kita bisa bertukar tempat dan mengganti karakter 1 dengan -2.

f-1 (x) = (2x + 3) / (x-1)

Jawab: A

4. Jika f (x) = 2x / (x – 1), maka f-1 (1) = …

A. -1

B. 0

C. 1

D. 2

E. 3

Diskusi

Pertama tentukan f-1 (x)

y = 2x / (x – 1)

y (x – 1) = 2x

yx – y = 2x

yx – 2x = y

x (y – 2) = y

x = y / (y – 2)

f-1 (x) = x / (x – 2)

f-1 ((1)) = 1 / (1-2) = -1

Jawab: A

5. Invers didefinisikan sebagai f (x) = (x – 3) / (2x + 5), x ≠ – 5/2 dan f-1 (x) adalah kebalikan dari fungsi f (x). Rumus f-1 (x) adalah …

A. (5x + 3) / (1 – 2x)

B. (5x – 3) / (1 – 2x)

C. (5x + 3) / (2x + 1)

D. (2x + 3) / (5x + 5)

E. (2x – 3) / (5x + 5)

Diskusi

f (x) = (x – 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:

f – 0,1 (x) = (-dx + b) / (cx – a)

f-1 (x) = (-5x – 3) / (2x -1) atau pembilang dan penyebut – (min)

f-1 (x) = (5x + 3) / (-2x + 1)

f-1 (x) = (5x + 3) / (1 – 2x)

Jawab: A

6. Diberikan f (x) = (5x – 5) / (x – 5), kebalikan dari fungsi f (x) f-1 (x) = …

A. (x – 5) / (5x – 5)

B. (x + 5) / (5x – 5)

C. (5x-1) / (5x-5)

D. (5x-5) / (x-5)

E. (5x – 5) / (x + 5)


28. contoh fungsi invers


F(x) = 2x+5 , f⁻¹(x)=....

y=2x+5  
-2x = 5-y
2x = y-5
 x = y - 5 
         2
f⁻¹(x) = x-5
             2
      

29. contoh fungsi invers


itu rumus cepat bisa dihafalin sih semoga membantu

30. contoh soal fungsi invers


invers matrik apa invers persamaan gan?

31. Coba berikan contoh soal dan penyelesaiannya 1. mencari nilai invers dari suatu fungsi


Maaf kalau salah maklum kerja sendiri

32. 5 contoh soal fungsi invers beserta jawabannya ​


Jawab:

CONTOH SOAL:

Jika f(x) = x - 3 maka f-[tex]Pangkat 1[/tex](x)

A. x - 3

B. 3 - x

C. x + 3

D. x

Penjelasan dengan langkah-langkah:

JAWABAN : C. x + 3

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

[tex]= f(x) = x - 3\\= y = x - 3\\[/tex]

[tex]= x = y + 3\\= Ganti x menjadi fpangkat1 (x) dan y menjadi x sehingga diperoleh hasil f-pangkat1 (x) = x + 3[/tex]


33. contoh soal invers fungsi?​


Jawaban:

Jika f(x) = 2x – 6 maka f-1(x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1/2x – 3

D. -1/2x + 3

E. x – 12

Pembahasan

Agar dapat menentukan fungsi invers,maka harus dapat menentukan persamaan x-nya dahulu.

f(x) = 2x – 6

2x = f(x) + 6

x = f(x) + 6 / 2 (ubah x menjadi f-1(x) dan f(x) diganti dengan x)

f-1(x) = (x + 6) / 2 = 1/2 x + 3

Jawaban: B


34. Buatlah satu contoh soal fungsi invers yang memuat cara penyelesaian !


Penjelasan dengan langkah-langkah:

ada di lampiran


35. contoh soal fungsi invers


Jika f(x) = 2x - 6 maka fˉ¹(x) =

Pembahasan :
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan fˉ¹(x) dan f(x) diganti dengan x )

fˉ¹(x) = (x + 6) / 2
         = 1/2 x + 3

semoga dapat membantu

36. SOAL KOMPOSISI FUNGSI DAN FUNGSI INVERS


f(x) = 3x +5/3x -7
dirubah ke bentuk invers
y = 3x + 5 / 3x - 7
3xy - 7y = 3x + 5
3xy - 3x = 7y + 5
x (3y - 3) = 7y + 5
x = 7y+5/3y - 3

f ⁻¹(x) = 7x + 5/ 3x - 3

37. Berikan contoh soal menentukan invers dari fungsi komposisiMhon di jwab​


Jawaban:

jika f(x) = 3× + 2 dan g(x) = 4×2.maka ( f o g) (x) dan (g o f) (x) adalah...

maaf kalo salah


38. fungsi invers bentuk pecahan


fungsi inver bentuk pecahan adalah utk mendapatkan sekawan dari pecahan tersebut sehingga mudah untuk menyederhanakannya.

39. contoh fungsi invers dan fungsi komposisi​


fungsi invers

f(x) =3x+5

y=3x+5

y-5=3x

y-5/3=x

inversnya = x-5/3


40. buatlah contoh penyelesaian cara cepat fungsi invers yang bentuk biasa dan pecahan


bilangan genap bilangan ganjil


Video Terkait

Kategori matematika