contoh soal tentang fungsi komposisi fungsi dan fungsi linear
1. contoh soal tentang fungsi komposisi fungsi dan fungsi linear
semoga bisa membantu
2. berikan contoh soal dari fungsi komposisi
Diketahui :
f(x) = 5x + 2
g(x) = 8x + 10
berapakah nilai dari :
1) fog(x)
2) gof(x)
3. berikan contoh soal fungsi komposisi
f(x) = 2x-4 , g(x) = x²+2
(gof)(3)???
4. tolong dibantu dengan cara untuk soal fungsi komposisi
Jawab:
Penjelasan dengan langkah-langkah:
5. contoh soal fungsi komposisi dalam kehidupan sehari-hari beserta jawaban
Jawaban:
1. Jika f(x) = 3x + 2 dan g(x) = 4x2 . Maka (f o g)(x) dan (g o f)(x) adalah …
Pembahasan
(f o g)(x) = f (g(x))
(f o g)(x) = f (4x2)
(f o g)(x) = 3(4x2) + 2
(f o g)(x) = 12x2 + 2
(g o f)(x) = g(f(x))
(g o f)(x) = 4(3x + 2)2
(g o f)(x) = 4(9x2 + 12x + 4)
(g o f)(x) = 36x2 + 48x + 16
Jadi, (f o g)(x) = 12x2 + 2 dan (g o f)(x) = 36x2 + 48x + 16.
2. Diketahui (f o g)(x) = 2x + 4 dan f(x) =x – 2. Tentukan fungsi g (x)!
Pembahasan
(f o g)(x) = 2x + 4
f(g(x)) = 2x + 4
g(x) – 2 = 2x + 4
g(x) = 2x + 4 + 2
g(x) = 2x + 6
Jadi, fungsi g (x) adalah g(x) = 2x + 6.
Penjelasan dengan langkah-langkah:
Semoga membantu
6. Contoh invers fungsi komposisi
fog^1(x)= 2x + 3
f(x)= x + 1
g(x)= ...?
7. Buatlah penjelasan menarik tentang manfaat belajar fungsi komposisi dan invers disertai contoh soal ceritanya dan jawaban
Fungsi komposisi dan fungsi invers adalah dua jenis fungsi yang harus kamu pahami dengan seksama. Kedua jenis fungsi ini akan memberikan pemahaman yang lebih untuk kamu mempelajari matematika, terutama dalam materi aljabar. Fungsi komposisi dan invers banyak digunakan dalam kehidupan sehari-hari khususnya di bidang produksi. Fungsi komposisi dan fungsi invers juga dapat digunakan dalam ilmu lainnya, seperti fisika, ekonomi, dan lain sebagainya. Fungsi komposisi dan fungsi invers dapat digunakan untuk menyederhanakan perhitungan dan menggambarkan hubungan antara variabel dalam berbagai ilmu pengetahuan.
Berikut ini adalah contoh soal cerita yang penyelesaiannya menggunakan fungsi komposisi:
Seorang pedagang menjual buah apel dengan harga Rp 10.000/kg. Jika setiap hari ia menjual 5 kg apel, maka pendapatan pedagang tersebut setiap hari adalah Rp 50.000. Jika setiap bulan terdapat 30 hari, maka pendapatan pedagang tersebut setiap bulan adalah Rp 1.500.000.
Dalam soal di atas, terdapat dua fungsi yang dapat kita temukan yaitu:
- Fungsi f(x) = 10.000x yang menyatakan hubungan antara jumlah buah apel yang dijual (x) dengan pendapatan pedagang setiap hari.
- Fungsi g(x) = 30x yang menyatakan hubungan antara pendapatan pedagang setiap hari (x) dengan pendapatan pedagang setiap bulan.
Dengan menggunakan fungsi komposisi, kita dapat menemukan hubungan antara jumlah buah apel yang dijual dengan pendapatan pedagang setiap bulan yaitu:
(g o f)(x) = g(f(x)) = g(10.000x) = 30(10.000x) = 300.000x
Jadi, jika pedagang tersebut menjual x kg buah apel setiap hari, maka pendapatan pedagang tersebut setiap bulan adalah Rp 300.000x.
8. Soal Dan Jawaban Komposisi Fungsi
Jawaban:
Fungsi komposisi adalah sebuah operasi pada 2 fungsi atau lebih untuk menghasilkan sebuah fungsi yang baru.
Fungsi komposisi menggunakan notasi ‘o’. Contohnya jika fungsi f(x) dan g(x), maka (f o g) (x) dibaca fungsi f bundaran g yang dikerjakan dengan cara memasukkan fungsi g ke dalam fungsi f.
Penjelasan dengan langkah-langkah:
correct me if im wrong
9. fungsi komposisi dan contohnya
Jawaban:
Fungsi komposisi adalah sebuah operasi pada 2 fungsi atau lebih untuk menghasilkan sebuah fungsi yang baru. Fungsi komposisi menggunakan notasi 'o'. Contohnya jika fungsi f(x) dan g(x), maka (f o g) (x) dibaca fungsi f bundaran g yang dikerjakan dengan cara memasukkan fungsi g ke dalam fungsi f.
Penjelasan dengan langkah-langkah:
Maaf Kalau Salah:)
10. contoh soal komposisi fungsi jika g(x) = 5x + 3, dan (fog)(x) = 10x + 7. maka f(x) nya adalah?..
Kelas 10 Matematika
Bab Fungsi Komposisi
(fog) (x) = 10x + 7
f(5x + 3) = 2 (5x + 3) + 1
f(x) = 2x + 1
11. tolong di bantu please! soalnya gak ngerti tentang fungsi komposisi
Quick Tips!
⇒ (f o g) (x) = f(g(x))
⇒ (g o f) (x) = g(f(x))
⇒ (f o f) (x) = f(f(x))
⇒ (g o g) (x) = g(g(x))
===================
f(x) = 2x - 1
g(x) = x + 3
A. (f o g) (x) ⇔ f(g(x))
(f o g) (x) = 2(x + 3) - 1
(f o g) (x) = 2x + 6 - 1
(f o g) (x) = 2x + 5
B. (g o f) (x) ⇔ g(f(x))
(g o f) (x) = (2x - 1) + 3
(g o f) (x) = 2x - 1 + 3
(g o f) (x) = 2x + 2
C. (f o f) (x) ⇔ f(f(x))
(f o f) (x) = 2(2x - 1) - 1
(f o f) (x) = 4x - 2 - 1
(f o f) (x) = 4x - 3
D. (g o g) (x) ⇔ g(g(x))
(g o g) (x) = (x + 3) + 3
(g o g) (x) = x + 6
=========================
Kelas : XI SMA
Mapel : Matematika Wajib
Kategori : Fungsi (Fungsi Komposisi dan Fungsi Invers)
Kode Mapel : 11.2.6
12. contoh cerita dalam bentuk soal fungsi komposisi kelas XI
Contoh cerita dalam bentuk soal fungsi komposisi kelas XI
1.sebutkan teknik teknik mengambar gambar dekoratif???
2.berapakah 850 mg=........gr
3.mean dari data : 6,7,y,4,7,8,5,8,6,8,8,6 adalah 6,5.tentukan : a.nilai y b.mediannya
4.nilai rata rata ulangan mtk sekelompok siswa adalah 63 siswa.jika ditambah 1 orang bagi yang memiliki nilai 80.maka nilai rata rata menjadi 6,4.berapakah banyak siswa pada kelompok semula ?
13. latihan soal matematika fungsi komposisi
1. f(x)= x - 4
f(x²) - { f(x)}² +3.f(x) =
= x²-4 - (x-4)² + 3(x-4)
= x² - 4 -(x² -8x +16) + 3x -12
= x² -4 - x² + 8x - 16 + 3x - 12
= 11 x - 32
untuk x = -2 --> 11(-2) - 32 = - 54
2. g(x) = 2x+ 3
g⁻¹(x) = (x - 3)/2
fog(x) = 12x² + 32x + 26
f(x) = fogog⁻¹ = 12{(x-3)/2}² + 32(x -3)/2 + 26
f(x) = 12 { 1/4 (x² -6x + 9)} + 16(x-3) + 26
f(x) = 3x² - 18x + 27 + 16x - 48 + 26
f(x)= 3x² - 2x + 5
3> f(x) = 2x² - 3x + 1
g(x) = x-1
fog(x) = 0
2(x-1)² -3(x-1) + 1 = 0
2(x²-2x +1) - 3x + 3 + 1= 0
2x² - 4x + 2 - 3x + 3 + 1 =0
2x² - 7x + 6 =0
(2x - 3)(x- 2) = 0
x = 3/2 atau x = 2
14. Mohon bantuannya ya soal mtk tentang komposisi fungsi...
Jawaban:
A.
Penjelasan dengan langkah-langkah:
maaaf kallo salahhhj
15. Soal komposisi 3 fungsi
.............................
16. Kaa bantu jawab sekarang soal matematika fungsi komposisi
Penjelasan dengan langkah-langkah:
Dik: f(x) = -2x + 4
g(x) = x^2 - 3x
Dit : f ° g(x) = ?
Jawab:
[tex]f \circ \: g(x) = f(g(x)) \\ = - 2 \cdot \: g(x) + 4 \\ \: \: \: \: = - 2( {x}^{2} - 3x) + 4 \\ = - 2 {x}^{2} + 6x + 4[/tex]
Semoga bermanfaat.
17. contoh soal komposisi fungsi jika g(x) = 5x + 3, dan (fog)(x) = 10x + 7. maka f(x) nya adalah?..
Semoga membantu yah....
18. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?
Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51
19. soal latihan materi: fungsi invers dan fungsi komposisi, tolong bantu :)
Jawab:
Penjelasan dengan langkah-langkah:
soal 1a
f(x)= 2x + 5
2x= f(x) - 5
x= ¹/₂ [ f(x) - 5 ]
f⁻¹(x)= ¹/₂ (x - 5 )
soal 2a
f(x) = x² - 4x + 2
x²- 4x = f(x) - 2
(x - 2)² = f(x) -2 + 4
(x - 2)² = f(x) + 2
[tex]\sf (x-2) = \pm \sqrt{f(x) + 2}\\\\x = 2 \pm \sqrt{f(x) + 2}\\\\f^{-1}(x) = 2 \pm \sqrt{x+2}[/tex]
soal 2a
fog(x) = f{ g(x)}
= f {2x+5}
= 2x+5 - 3
(fog)(x) = 2x + 2
gof(x) = g{ f(x)}
= g { f(x)}
= g {x- 3}
= 2 (x-3) + 5
=2x -6 + 5
(gof)(x) = 2x - 1
soal2b
fog(x) = 2x+ 2
(fog)⁻¹(x)= ¹/₂ ( x- 2)
gof(x)= 2x- 1
(gof)⁻¹(x)= ¹/₂ (x + 1)
20. soal fungsi komposisibantu jawab pakai cara
Jawaban:
[tex](fog)(x) = f(g(x))= 2( \frac{x + 4}{x - 1} ) - 5 \\ f(g(2)) = 2( \frac{2 + 4}{2 - 1} ) - 5 \\ = 2 (\frac{6}{1} ) - 5 \\ = 2(6) - 5 \\ = 12 - 5 = 7[/tex]
21. sebutkan soal essay komposisi 3 fungsi
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
f(x) = 3x + 2
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x
a) (f o g)(x)
"Masukkan g(x) nya ke f(x)"
sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f)(x)
"Masukkan f (x) nya ke g (x)"
sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
maaf ya kalau salah
22. Berikan contoh soal menentukan invers dari fungsi komposisiMhon di jwab
Jawaban:
jika f(x) = 3× + 2 dan g(x) = 4×2.maka ( f o g) (x) dan (g o f) (x) adalah...
maaf kalo salah
23. tentukan turunan fungsi komposisi dari akar 1-5x
Penjelasan dengan langkah-langkah:
[tex]y = \sqrt{1 - 5x} \\ y = (1 - 5x) ^{ \frac{1}{2} } \\ y'= \frac{1}{2} (1 - 5x) ^{ - \frac{1}{2} } ( - 5) \\ = \frac{ - 5}{2(1 - 5x) ^{ \frac{1}{2} } } = - \frac{5}{2 \sqrt{1 - 5x} } [/tex]
24. buatlah contoh soal fungsi komposisi dari sifat asosiatif dan sifat identitas dengan cara... matamatika wajib)
Jawaban:
Fungsi Komposisi adalah penggabungan operasi dari dua fungsi secara berurutan sehingga menghasilkan sebuah fungsi yang baru. Operasi fungsi komposisi biasa dilambangkan dengan "o" dan dibaca komposisi/bundaran. Untuk memahami fungsi komposisi, simaklah penjelasan berikut.
Misalkan diketahui A = {a1, a2, a3}, B = {b1, b2, b3, b4}, dan C = {c1, c2, c3}, maka fungsi f : A → B dan g : B → C dapat didefinisikan dalam diagram panah di bawah ini.
Dari kedua diagram di atas, dapat ditentukan fungsi yang memetakan secara langsung dari A ke C. Hal ini dapat digambarkan dalam diagram berikut.
Dari, diagram di atas diperoleh
f(a1) = b2 dan g(b2) = c2 sehingga (g o f) (a1) = c2
f(a2) = b1 dan g(b1) = c1 sehingga (g o f) (a2) = c1
f(a3) = b3dan g(b3) = c3 sehingga (g o f) (a3) = c3
Jika fungsi yang langsung memetakan A ke C tersebut dianggap fungsi tunggal, yang dapat dinyatakan dalam sebagai berikut.
(g o f) (a1) = c2
(g o f) (a2) = c1
(g o f) (a3) = c3
Fungsi tunggal tersebut merupakan fungsi komposisi dan dilambangkan dengan g o f dibaca "fungsi g bundaran f". Fungsi g o f adalah fungsi komposisi dengan f yang dikerjakan terlebih dahulu kemudian dilanjutkan dengan g. Sedangkan, untuk f o g "dibaca fungsi f bundaran g". Jadi, f o g adalah fungsi komposisi dengan g dikerjakan terlebih dahulu daripada f. Fungsi komposisi yang melibatkan fungsi f dan g dapat ditulis:
(g o f)(x) = g(f(x))
(f o g)(x) = f(g(x))
Penjelasan:
semoga membantu
25. Tolong buatkan contoh soal fungsi komposisi yang paling mudah
Diketahui :
F(x) = 5x-4
G(x) = 2x+12
Tentukan :
a) (FoG) (x)
b) (GoF) (x)
26. contoh 2 buah soal tentang fungsi komposisi?
Diketahui fungsi F(0)= 3 F(1)= -2 F(2)= 4 F(3)= -2 Dan nilai (fog)(x) dari (fog)(u)=0 (fog)(v)=1 (fog)(w)=3 (fog)(a)=2 Tentukan g(x) untuk x=u,v,w,aIni soal sama jawaban, tapi invers
27. Mohon bantuannya Ini soal mtk tentang fungsi komposisi & invers
Jawaban:
f(x) + g(x) = 2x² + 2x - 3
Penjelasan dengan langkah-langkah:
f(x) = 2x² + x - 5
g(x) = x + 2
f(x) + g(x) = 2x² + x - 5 + x + 2
f(x) + g(x) = 2x² + 2x - 3
semoga jawabannya membantu
28. soal fungsi komposisi
a) (gof) (x) = x² + 3x - 11
g(f(x)) = x² + 3x - 11
g(x² + 3x - 5) = x² + 3x - 11
misal: x² + 3x - 5 = a
x² + 3x - 5 - 6 = a - 6
x² + 3x - 11 = a - 6
g(a) = a - 6
g(x) = x - 6
b) (gof)(x) = 3x² - 6x + 7
g(f(x)) = 3x² - 6x + 7
g(x² - 2x + 1) = 3x² - 6x + 7
misal: x² - 2x + 1 = m -- kedua ruas dikali 3
3x² - 6x + 2 = 2m
3x² - 6x + 2 + 5 = 2m + 5
3x² - 6x + 7 = 2m + 5
g(m) = 2m + 5
g(x) = 2x + 5
semoga membantu ya :)
29. tuliskan 2 contoh dari fungsi komposisi dan fungsi invers tolong di bantu
Penjelasan dengan langkah-langkah:
komposisi :
1. Jika (f o g)(x) = x² + 3x + 4 dan g(x) = 4x – 5. Berapakah nilai dari f(3)?
=> (f o g)(x) = x² + 3x + 4
f (g(x)) = x² + 3x + 4
g(x) = 3 maka,
4x – 5 = 3
4x = 8
x = 2
Karena f (g(x)) = x² + 3x + 4 dan untuk g(x) = 3 didapat x = 2
Sehingga : f (3) = 2² + 3 . 2 + 4 = 4 + 6 + 4 = 14
2. Diketahui f(x) = 2x dan g(x) = x-3. Tentukan (g o f)(x).
=> (g o f)(x) = g(f(x))
(g o f)(x) = g(2x)
(g o f)(x) = (2x) - 3
(g o f)(x) = 2x - 3
invers :
1. Tentukan fungsi invers dari f(x) = x – 3 maka f-1(x)!
=> f(x) = x – 3
y = x – 3
x = y + 3
Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3
2. Tentukan fungsi invers dari f(x) = x2 – 4!
> y = x2 – 4
x2 = y + 4
x = √ y + 4
f-1(x) = √ x + 4
semoga membantu
30. soal fungsi komposisi dan fungsi invers
ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers
31. contoh soal cerita dan pembahasannya tentang fungsi komposisi
ada dilampiran yah, liat aja
32. contoh soal dan jawaban fungsi komposisi
Pendahuluan
Fungsi komposisi adalah penggabungan dua atau lebih fungsi sehingga terbentuk suatu fungsi baru. Fungsi komposisi dituliskan dengan "(f o g)(x)" dimana "o" dibaca bundaran. Jadi, "(f o g)(x)" dibaca f bundaran g.
[tex]~[/tex]
Sifat sifat fungsi komposisi:
Tidak berlaku sifat komutatif(f o g)(x) ≠ (g o f)(x)
Berlaku sifat asosiatif(f o (g o h))(x) = ((f o g) o h)(x)
Jika fungsi identitas(f o I)(x) = (I o f)(x) = f(x)
[tex]~[/tex]
Pembahasan SoalContoh soal dan jawaban fungsi komposisi:
[tex]~[/tex]
Soal:
Diketahui f(x) = 3x + 2 dan g(x) = -x. Tentukan (f o g)(x)!
[tex]~[/tex]
Jawaban:
f(x) = 3x + 2
g(x) = -x
(f o g)(x) = ?
[tex]~[/tex]
(f o g)(x)
f(g(x))
3(-x) + 2
-3x + 2
2 - 3x
[tex]~[/tex]
Pelajari Lebih LanjutContoh soal fungsi komposisi: brainly.co.id/tugas/8221974Contoh soal fungsi komposisi: brainly.co.id/tugas/10462734Contoh soal fungsi komposisi: brainly.co.id/tugas/12114752[tex]~[/tex]
Detail JawabanMapel: MatematikaKelas: 10 (1 SMA)Materi: FungsiKode Soal: 2Kode Kategorisasi: 10.2.333. 3 contoh kehidupan sehari hari tentang fungsi dan komposisi fungsi
Penerapan Komposisi Fungsi Dan Fungsi Invers Dalam kehidupan Sehari-hari
1. Proses pembuatan buku diproses melalui 2 tahap yaitu tahap editorial dilanjutkandengan tahap produksi. Pada tahap editorial, naskah diedit dan dilayout sehinggamenjadi file yang siap dicetak. Kemudian, file diolah pada tahap produksi untuk mencetaknya menjadi sebuah buku. Proses pembuatan buku ini menerapkan algoritmafungsi komposisi.
2. Untuk mendaur ulang logam, awalnya pecahan logam campuran dihancurkan menjadiserpihan kecil. Drum magnetic pada mesin penghancur menyisihkan logam magneticyang memuat unsure bes. Lalu sisa pecahan logam dikeruk dan dipisahkan, sedangkanserpihan besi dilebur menjadi baja baru. Proses pendaur ulang logam tersebutmenggunakan fungsi komposisi.
3. Sebuah lempeng emas yang dapat dibentuk menjadi berbagai perhiasan jugamenerapkan fungsi komposisi.
4. Di bidang ilmu yang lain fungsi komposisi dan inver juga di terapkan seperti:
a. Di bidang ekonomi : digunakan untuk menghitung dan memperkirakan sesuatuseperti fungsi permintaan dan penawaran.
b. Di bidang kimia : digunakan untuk menentukan waktu peluruhan unsur.
c. Di bidang geografi dan sosiologi : digunakan untuk optimasi dalam industry dankepadatan penduduk.
d. Dalam ilmu fisika sering digunakan persamaan fungsi kuadrat untuk menjelaskanfenomena gerak.
5. Dengan menggunakan komposisi warna, pada mesin cetak dapat dihasilkan warnabaru. Pembuatan warna tersebut menerapkan fungsi komposisi. Ada berbagai masalah dalam kehidupan sehari-hari yang dapat diselesaikan denganmenggunakan fungsi komposisi seperti uraian berikut.
a. Harga jual p dari suatu komoditas ekspor hasil hutan dan jumlah terhual x,memenuhi persamaan P = ¼ x + 150 dengan 0 ≤ x ≤1.000 Misalkan biaya C dari produksi per unit adalah Jika kita mempelajari dan memahami fungsi komposisi dengan baik, kita dapatmenentukan biaya C sebagai fungsi dan harga p ketika semua unit yang diproduksiterjual
6. Penerapan komposisi fungsi juga terdapat dalam permainan sepak bola seperti penyusunan pemain atau formasi pemain dalam tim
34. Tolong dibantu ya ini soal komposisi fungsi
[tex]f(x) = \frac{x + 6}{3x - 2} \\ g(x) = 2x + 4 \\ (f \: o \: g)( - 1) = f(g( - 1)) \\ = f(2( - 1) + 4) \\ = f( - 2 + 4) \\ = f(2) \\ = \frac{2 + 6}{3(2) - 2} \\ = \frac{8}{6 - 2} \\ = \frac{8}{4} = 2[/tex]
35. tolongg bantu soal di bawah mengenai "fungsi komposisi" bserta contohnya.
kayu, plastik maaf kalau gk salah
36. tolong bantu aku . tugas projek matematika contoh soal dan jawaban penerapan fungsi komposisi pada kehidupan sehari2 . mohon gan
fungsi komposisi untuk mengetahui beratnya suatu benda
37. Berikan contoh soal berserta jawabannya Fungsi Komposisi (fog)(x) dan (gof)(x)
Jawab:
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
f(x) = 3x + 2
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x
a) (f o g)(x)
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f)(x)
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
Jawaban:
Berikan contoh soal berserta jawabannya
Fungsi Komposisi (fog)(x) dan (gof)(x)
JAWABAN ADA DI GAMBAR YA:))
38. 5 Contoh dan pembahasan soal transformasi komposisi
Itu mas jawabannya ttransformasi geometry
39. Berikan contoh fungsi komposisi dalam kehidupan sehari-hari?
contoh penggunaannya dalam kehidupan sehari-harinya seorang ibu rumah tangga yang suka memasak dan bikin kue, karena saya kenal baik dengan ibu yang satu ini.
Dalam suatu resep, dijumpai satu takaran yang tidak umum di sini, yaitu cups. Dikatakan dalam resep tersebut memakai gula sebanyak 1 1212 cups. What? 1 1212 cups itu berapa gram? Bukankah ukuran cups orang itu beda-beda? Hmmm..... mungkin saja ukuran cup orang itu ada yang A, B, C, atau bahkan D. Tapi dalam dunia tata boga disepakati ukuran standar cups itu sebagai berikut: 1 fluid cups = 8 fluid oz of water. Perhatikan di sini, ukuran cups adalah ukuran volume jadi nilainya dalam gram berbeda-beda tergantung zatnya. Jadi berapa gram kah 11212 cups gula?
Yang paling gampang tentu saja gunakanlangsung ukuran cups standard yang bisa dibeli di Ace Hardware, kemudian sendok aja gula tersebut menggunakan cups tersebut, langsung dapat 1 cups. Beres. Kalau bener-bener mau tahu (bukan sekedar mau tau ajah) berapa gram 1 cups gula itu, coba timbang saja gula yang tadi, supaya nanti bisa kita gunakan sebagai fungsi untuk mengkonversi cups ke dalam gram khusus untuk gula
Oke, tapi bagaimana jika kita tidak punya cups? Di sinilah peran matematika, dalam hal ini fungsi dan komposisi fungsi diperlukan. Well, luckily dari hasil googling ada fungsi yang mengubah dari dari cups ke oz gula, bahwa 1 cups gula = 7,05 oz gula. Jadi kita punya fungsi, sebut saja f yang memetakan dari ukuran cups ke ukuran oz, sebut saja fungsi f. Sehingga kita bisa tulis f(x)=7,05xf(x)=7,05x
Maka dengan mengalikan 112112 dengan 7.057.05 kita memperoleh 112cups=10,575oz112cups=10,575oz. Hmmm..... tapi berapakah 10,575 oz dalam gram? Untungnya kita juga punya fungsi yang mengkonversi dari oz ke gram, yaitu 1 oz = 28,35 gram, sebut saja fungsi g. Bisa kita tulis g(x)=28,35xg(x)=28,35x
Dengan demikian kita peroleh gula 112112 cups = 10,575 oz = 10.575 x 28,35 = 299.80 gram (dibulatkan menjadi 300 gram)
Dalam contoh di atas, kita bisa mengubah dari cups menjadi oz, untuk kemudian kita konversi lagi menjadi gram. Atau dengan komposisi fungsi kita bisa membuat fungsi konversi baru yang memetakan langsung dari cups ke dalam gram yang merupakan komposisi dari dua fungsi f dan g. Kita bisa tulis h(x)=g.∘.f(x)=g(f(x))=g(7,05x)=199.87xh(x)=g.∘.f(x)=g(f(x))=g(7,05x)=199.87x
Dari situ kita peroleh bahwa untuk mengkonversi dari satuan cups ke satuan gram, kita cukup mengalikannya dengan 199.97 atau dibulatkan menjadi 200. Dan 1 12cups=12×200=300
40. tugas mtkbuatlah 5 soal fungsi komposisi
Jawab:
Penjelasan dengan langkah-langkah:
2017
1. Diketahui jika adalah invers dari f, maka = ...
a. 2/3 (1 + x)
b. 2/3 (1 – x)
c. 3/2 (1 + x)
d. – 3/2 (x – 1)
e. – 2/3 (x + 1)
PEMBAHASAN:
Ingat rumus ini ya: jika , maka:
JAWABAN: A
2. Diketahui fungsi f(x) = 2x + 3 dan g(x) = x2 – 2x + 4. Komposisi fungsi (g o f)(x) adalah ...
PEMBAHASAN:
(g o f)(x) = g(f(x))
= g(2x + 3)
JAWABAN: C
3. Diketahui f(x) = x + 4 dan g(x) = 2x maka = ...
a. 2x + 8
b. 2x + 4
c. ½ x – 8
d. ½ x – 4
e. ½ x – 2
PEMBAHASAN:
(f o g)(x) = f(g(x))
= f(2x)
= 2x + 4
Kita cari invers dari (f o g)(x) yaitu:
(f o g)(x) = 2x + 4
y = 2x + 4
2x = y – 4
x = (y-4)/2
x = ½ y – 2
maka, = ½ x – 2
JAWABAN: E
4. Fungsi f ditentukan , x ≠ 3, jika invers dari f maka (x + 1) = ...
PEMBAHASAN:
Ingat lagi ya, jika
Sehingga:
JAWABAN: D
5. Diketahui , dan adalah invers dari f, maka (x) = ...
PEMBAHASAN:
Kita gunakan rumus: jika
JAWABAN: B
6. Diketahui f(x) = 2x + 5 dan , x ≠ -5 maka (f o g)(x) = ...
PEMBAHASAN:
JAWABAN: D
7. Invers dari fungsi , x ≠ 4/3 adalah(x) = ...
PEMBAHASAN:
Rumusnya: jika
JAWABAN: A
8. Diketahui fungsi f(x) = 3x – 1 dan . Nilai dari komposisi fungsi (g o f)(1) = ...
a. 7
b. 9
c. 11
d. 14
e. 17
PEMBAHASAN:
(g o f)(x) = g(f(x))
= g(3x – 1)
JAWABAN: C
9. Jika dan f-1 invers dari f, maka (x) = -4 untuk nilai x sama dengan ...
a. -2
b. 2
c. – ½
d. -3
e. – 1/3
PEMBAHASAN:
Kita pakai rumus: jika
-2x + 1 = -4x
-2x + 4x= -1
2x = -1
x = - ½
JAWABAN: C
10. Jika g(x) = x + 1 dan maka f(x) = ...
PEMBAHASAN:
JAWABAN: B
11. Diketahui , x ≠ 5/6 dan fungsi invers dari f(x) adalah (x). Nilai dari (2) = ...
a. 14/3
b. 17/14
c. 6/21
d. – 17/14
e. – 14/3
PEMBAHASAN:
Kita pakai rumus: jika
JAWABAN: C
12. Diketahui:
, dengan x ≥ -4 dan x ∊ R. Fungsi komposisi (g o f)(x) adalah ...
a. 2x – 4
b. x – 2
c. x + 2
d. x
e. 2x
PEMBAHASAN:
JAWABAN: D
13. Jika dan adalah invers dari f, maka (x + 1) = ...
PEMBAHASAN:
Kita pakai rumus: jika
JAWABAN: A
14. Diketahui f : R --> R dan g : R --> R, didefinisikan dengan dan g(x) = 2 sin x. Nilai (f o g)(- ½ π) adalah ...
a. -4
b. 2
c. 3
d. 6
e. 12
PEMBAHASAN:
(f o g)(x) = f(g(x))
= f(2 sin x)
JAWABAN: A
15. Suatu pemetaan f : R --> R, g : R --> R dengan dan g(x) = 2x + 3 maka f(x) = ...
PEMBAHASAN:
JAWABAN: A
16. Diketahui f : x --> x + 2 dan h : x --> x^2 – 2. Jika maka g(x) = ...
a. 2x + 3
b. 2x + 6
c. 2x + 9
d. x + 5
e. x – 3
PEMBAHASAN:
JAWABAN: B
17. Jika dan g(x) = 2x + 4 maka (x) = ...
PEMBAHASAN:
Untuk mencari inversnya, kita gunakan rumus:
JAWABAN: E
18. Jika maka fungsi g adalah g(x) = ...
a. 2x – 1
b. 2x – 3
c. 4x – 5
d. 4x – 3
e. 5x – 4
PEMBAHASAN:
g(x) + 1 = 4(x – 1)
g(x) = 4x – 4 – 1
g(x) = 4x – 5
JAWABAN: C
19. Fungsi f : R--> R dan g : R --> R ditentukan oleh f(x) = 2x + 5 dan g(x) = x + 2 maka memetakan x ke ...
PEMBAHASAN:
(f o g)(x) = f(g(x))
= f(x + 2)
= 2 (x + 2) + 5
= 2x + 4 + 5
= 2x + 9
(f o g)(x) = 2x + 9
y = 2x + 9
2x = y – 9
x = (y - 9)/2
= (x - 9)/2
JAWABAN: E
20. Jika f(x) = √x + 3 maka (x) = ...
PEMBAHASAN:
f(x) = √x + 3
y = √x + 3
y – 3 = √x
JAWABAN: C
21. Diketahui untuk setiap bilangan real x ≠ 0. Jika g : R --> R adalah suatu fungsi sehingga (g o f)(x) = g(f(x)) = 2x + 1 maka fungsi invers g-1(x) = ...
PEMBAHASAN:
Maka:
JAWABAN: D
22. Diketahui , x ≠ - ¼ . Jika adalah invers f, maka(x – 2) = ...
PEMBAHASAN:
Kita pakai rumus: jika
JAWABAN: A
23. Invers dari adalah ...
PEMBAHASAN:
JAWABAN: D
24. Jika , maka daerah asal dari (g o f)(x) adalah ...
a. x ≥ 8
b. -8 ≤ x ≤ 8
c. x ≥ 5
d. -5 ≤ x ≤ 5
e. 5 ≤ x ≤ 8 atau x > 8
PEMBAHASAN:
Sehingga daerah asal dari (g o f)(x) adalah:
Dari (i) dan (ii) diperoleh:
5 ≤ x < 8 atau x > 8
JAWABAN: E
25. Diberikan fungsi f dan g dengan f(x) = 2x + 1 dan , x ≠ 1 maka invers dari fungsi g adalah g-1(x) = ...