Contoh Soal Cerita Fungsi Invers Dalam Kehidupan Sehari Hari

Contoh Soal Cerita Fungsi Invers Dalam Kehidupan Sehari Hari

Soal cerita sehari hari mengenai fungsi invers

Daftar Isi

1. Soal cerita sehari hari mengenai fungsi invers


Soal Nomor 1
Tentukan invers dari fungsi-fungsi berikut ini:
a) f(x) = 2x + 3
b) f(x) = 2x2 + 3

Soal Nomor 2

Diberikan sebuah fungsiNilai dari f - 1 (1) adalah.....

A. − 3/4
B. − 1/2
C. − 1/4
D. 3/4
E. 3/2


2. Jelaskan menurut anda tentang contoh penerapan fungsi komposisi dan fungsi invers dalam kehidupan sehari-hari​


Jawaban:

. Proses Pembuatan Buku

Tahukah kamu kalau proses pembuatan buku merupakan komposisi dari beberapa proses yang berjalan beriringan. Buku dibuat dengan mengambil data dari penulis, lalu masuk ke tangan editor untuk dibenahi. Selanjutnya masuk tahap layout dan akhirnya naik cetak dan dijual di pasaran.

2. Proses Daur Ulang Logam

Logam yang didaur ulang umumnya terdiri dari beberapa jenis yang dicampur dan menjadi komposisi tertentu. Saat terjadi daur ulang, logam akan dipisahkan. Nah, proses pemisahan ini menggunakan variabel tertentu seperti penggunaan magnet. Sekilas proses ini mirip sekali dengan fungsi konvers.

3. Menentukan Permintaan dan Penawaran

Produk yang dijual di luar sana selalu menggabungkan komponen antara permintaan dan juga penawaran. Komponen ini berbaur menjadi satu menjadi suatu fungsi. Kalau permintaan naik, barang bisa saja menurun jumlahnya dan harga jadi menurun, begitu pun sebaliknya.

4. Proses Produksi Makanan

Makanan diproduksi menjadi beberapa langkah mulai dari penggunaan bahan mentah sampai pengemasan dan memberikan bumbu. Dengan fungsi komposisi, setiap bahan makanan akan dibuat menjadi jenis makanan tertentu dan memiliki rasa yang bermacam-macam pula.

5. Penyusunan Pemain dalam Olahraga

Beberapa jenis olahraga membutuhkan yang namanya komposisi pemain. Kalau komposisinya salah, hasil dari pertandingan akan kacau. Itulah kenapa dalam beberapa olahraga seperti sepak bola terdiri dari beberapa pemain dengan kemampuan tertentu


3. Jelaskan menurut anda tentang contoh penerapan fungsi komposisi dan fungsi invers dalam kehidupan sehari-hari​


Jawaban:

aejarh apapapappkaaoaoa


4. contoh soal fungsi invers


diketahui f(x)=-(2-3x)/2 maka f^-1(x)=

itu contoh soal fungsi invers


5. Rumus Fungsi Komposisi dan Fungsi Invers dan contoh soal


Saya foto ya catatan saya + latihan juga

tapi ga cukup slot fotonya


6. contoh soal cerita invers matriks invers ordo 3*3​


Pendahuluan:

Untuk penerapan invers matriks berordo 3 x 3 adalah untuk menyelesaikan sistem persamaan linear tiga variabel yaitu dengan menggunakan sifat invers matrik yaitu

AX = B ⇒ X = A⁻¹. B

.

Invers matriks

A = 1/(det A) × Adjoin A

.

Untuk menentukan Adjoin matriks A (transpose matriks kofaktor)

1) Tentukan matriks Minor

M =  

dengan

M₂₃ = determinan dari matrik yang terbentuk jika baris 2 dan kolom 3 pada matriks A dihilangkan

2) Tentukan matriks Kofaktor

C =   =  

3) Tentukan transpose dari matriks kofaktor

Untuk menentukan determinan matriks A, ada dua cara yaitu  

1) cara sarrus  

2) cara kofaktor  dengan baris tertentu atau kolom tertentu

Contoh soal:

Ani membeli 3 kg jeruk, 1 kg apel dan 1 kg alpukat dengan harga Rp61.000,00. Ida membeli 2 kg jeruk, 2 kg apel dan 1 kg alpukat dengan harga Rp67.000,00. Wati membeli 1 kg jeruk, 3 kg apel dan 2 kg alpukat dengan harga Rp80.000,00. Jika mereka bertiga membeli buah di toko yang sama, berapakah harga 1 kg dari masing-masing dari buah tersebut?

Jawaban:

Misal  

x = harga 1 kg jeruk

y = harga 1 kg apel

z = harga 1 kg alpukat

.

Bentuk sistem persamaan linear tiga variabelnya

3x + y + z = 61.000

2x + 2y + z = 67.000

x + 3y + 2z = 80.000

.

Bentuk matriksnya

A =  

Kita tentukan matriks minornya

M =  

C =  

Adjoin A =  

Untuk menentukan determinan A, kita gunakan cara kofaktor dengan baris 1

det A = a₁₁.C₁₁ + a₁₂.C₁₂ + a₁₃.C₁₃

det A = 3(1) + 1(-3) + 1(4)

det A = 4

maka

X = A⁻¹ . B

Jadi  

harga 1 kg jeruk = Rp12.000,00

harga 1 kg apel = Rp18.000,00

harga 1 kg alpukat = Rp7.000,00


7. contoh soal fungsi invers


Dik : f(x) = -(2-3x) / 2, tentukan fungsi invers nya........

8. tolong buatin soal cerita buat invers fungsi dong, sdh pushing soalnya​


Jawaban:

Adi adalah seorang pemain basket amatir, dia dapat memasukan bola

    (jarak 1       meter) setiap x      lemparan sebesar f(x)  , bola yang masuk

    mengikuti

   fungsi f(x) = x - 1/2x yang adalah jumlah bola yg masuk,

   jika dia melakukan 10 lemparan berapa bola yang masuk?

   f (10)= 10 - 1/2*10 

          = 10-5 = 5

    Maka setiap 10 lemparan dia dapat memasukan 5 bola.

Simak lebih lanjut di Brainly.co.id - https://brainly.co.id/tugas/1730737#readmore


9. tuliskan soal cerita dan jawabannya tentang invers fungsi ???


1. Adi adalah seorang pemain basket amatir, dia dapat memasukan bola
    (jarak 1       meter) setiap x      lemparan sebesar f(x)  , bola yang masuk
    mengikuti
   fungsi f(x) = x - 1/2x yang adalah jumlah bola yg masuk,
   jika dia melakukan 10 lemparan berapa bola yang masuk?
   f (10)= 10 - 1/2*10 
          = 10-5 = 5
    Maka setiap 10 lemparan dia dapat memasukan 5 bola.
   
 

10. contoh soal dan pembahasanya tentang fungsi komposisi invers


Jawab:

Diketahui fungsi [tex]\displaystyle f(x)=\frac{x-2}{x+2}[/tex] dan [tex]\displaystyle g(x)=x+2[/tex], maka [tex]\displaystyle (f\circ g)^{-1}(x)=\cdots[/tex]

Penjelasan dengan langkah-langkah:

Cara pertama

Komposisikan kedua fungsi

[tex]\begin{aligned}(f\circ g)(x)&\:=f(g(x))\\\:&=f(x+2)\\\:&=\frac{x+2-2}{x+2+2}\\\:&=\frac{x}{x+4}\end{aligned}[/tex]

Invers kan

[tex]\begin{aligned}y&\:=\frac{x}{x+4}\\xy+4y\:&=x\\(y-1)x\:&=-4y\\x\:&=-\frac{4y}{y-1}\\(f\circ g)^{-1}(x)\:&=-\frac{4x}{x-1}\end{aligned}[/tex]

Cara kedua

Invers kan masing-masing fungsi

[tex]\begin{aligned}f(x)&\:=\frac{x-2}{x+2}\\y\:&=\frac{x-2}{x+2}\\xy+2y\:&=x-2\\(y-1)x\:&=-2(1+y)\\x\:&=-\frac{2(1+y)}{y-1}\\f^{-1}(x)\:&=-\frac{2(x+1)}{x-1}\end{aligned}[/tex]

dan

[tex]\begin{aligned}g(x)&\:=x+2\\y\:&=x+2\\x\:&=y-2\\g^{-1}(x)\:&=x-2\end{aligned}[/tex]

Berdasarkan kedua rumus

[tex]\displaystyle \boxed{\begin{matrix}(f\circ g)^{-1}(x)=\left ( g^{-1}\circ f^{-1} \right )(x)\\ (g\circ f)^{-1}(x)=\left ( f^{-1}\circ g^{-1} \right )(x)\end{matrix}}[/tex]

maka

[tex]\begin{aligned}(f\circ g)^{-1}(x)&\:=\left ( g^{-1}\circ f^{-1} \right )(x)\\\:&=g^{-1}\left ( f^{-1}(x) \right )\\\:&=g^{-1}\left ( \frac{-2x-2}{x-1} \right )\\\:&=\frac{-2x-2}{x-1}-2\\\:&=\frac{-2x-2-2(x-1)}{x-1}\\\:&=-\frac{4x}{x-1}\end{aligned}[/tex]


11. contoh soal fungsi invers


0 2 2
0 0 2
0 0 0
adalah contoh invers

12. Jelaskan menurut anda tentang contoh penerapan fungsi komposisi dan fungsi invers dalam kehidupan sehari-hari​


Jawaban:

rukun

Penjelasan dengan langkah-langkah:

ngga bisa bahasa matematika


13. bagaimana menyelesaikan masalah tentang soal cerita mengenai fungsi invers ?


1. Baca soalnya aja dengan seksama
2. Pahami maksud soalnya
3. Misalkan setiap bentuk soal dam bentuk fungsi persamaan
4. nah kalau udah jadi persamaan kan gampang deh tinggal samain kaya soal biasa.


Semangat belajar ^ ^
Iangat, Kejujuran yang utama !

14. contoh soal fungsi invers


Jika f(x) = 2x - 6 maka fˉ¹(x) =

Pembahasan :
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan fˉ¹(x) dan f(x) diganti dengan x )

fˉ¹(x) = (x + 6) / 2
         = 1/2 x + 3

semoga dapat membantu

15. 5 contoh soal fungsi invers beserta jawabannya ​


Jawab:

CONTOH SOAL:

Jika f(x) = x - 3 maka f-[tex]Pangkat 1[/tex](x)

A. x - 3

B. 3 - x

C. x + 3

D. x

Penjelasan dengan langkah-langkah:

JAWABAN : C. x + 3

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

[tex]= f(x) = x - 3\\= y = x - 3\\[/tex]

[tex]= x = y + 3\\= Ganti x menjadi fpangkat1 (x) dan y menjadi x sehingga diperoleh hasil f-pangkat1 (x) = x + 3[/tex]


16. contoh soal fungsi invers dan jawaban


diketahui f(X)=-(2-3x)/2, maka fpangkat-1=
f(x)=-(2-3x)/2
f(x)=(-2+3x)/2
⇒y=(-2+3x)/2
⇒2y=-2+3x
⇒2y+2=3x
⇒x=(2y+2)/3
jadi fpangkat-1(x)=(2x+2)/3
⇒fpangkat-1(x)=2(x+1)/3
⇒fpangkat-1(x)=2/3(x+1)
jika g (x+1) = 2x - 1 dan f(g(x+1)) = 2x +4 maka f(0) = ...
pembahasan:
g(x+1) = 2x-1
f(g(x+1)) = 2x+4
maka f(2x-1) = 2x+4
misal 2x-1 = P maka x = (P+1)/2
maka f(P) = 2{(P+)/2} + 4
maka f(P) = P + 1 + 4
maka f(x) = x + 5

17. contoh soal dan jawaban tentang fungsi invers


soal :
dik : matriks A ( 5 -7 ) maka A(pangkat)-1 =……
( 3 -4 )


jawab :
1/-20-(-21) (-4 7) = 1/1 (-4 7) = (-4 7)
(-3 5) (-3 5) (-3 5)

18. contoh saol matematika tentang matriks invers dalam kehidupan sehari hari​


InversMatriks

Invershanya dipunyai oleh matriks yang  tidak singuler. Inversmatriks A dinyatakan dengan A-1 dansecara umum dirumuskan




19. saran soal cerita fungsi invers yang jarang dipake dong, soal cerita + pembahasannya ya klo bisa


Soal cerita fungsi:

Rayan adalah pemain basket profesional, dia bisa memukul bola (jarak 1 meter) setiap x lemparan adalah f(x) , bola yang masuk mengikuti fungsi

f(x) = x - 1/2x yang merupakan jumlah bola yang dimasukkan, jika dia membuat 20 lemparan, berapa banyak bola yang masuk?

Penjelasan dengan langkah-langkah:

f(x) = x - 1/2x

f(20)= 20- 1/2*20

       = 20-10 = 10

Jadi setiap 20 lemparan Rayan bisa memasukkan 10 bola.

Fungsi, dalam istilah matematika, adalah pemetaan setiap bagian dari suatu himpunan (dikenal sebagai domain) ke subset dari himpunan lain (dikenal sebagai kodomain). Istilah ini memiliki arti yang berbeda dari kata yang sama yang digunakan sehari-hari, seperti "alat berfungsi dengan adil". Konsep fungsi adalah salah satu konsep dasar matematika dan setiap ilmu kuantitatif.

Pelajari lebih lanjut

Pelajari lebih lanjut tentang :

Apa pengertian fungsi dalam matematika pada https://brainly.co.id/tugas/1376015

#BelajarBersamaBrainly


20. apa itu invers fungsi? berikan satu contoh soal invers fungsi ​


Jawaban:

menurut Wikipedia invers fungsi adalah Fungsi Invers adalah fungsi yang merupakan kebalikan aksi dari suatu fungsi.

Penjelasan dengan langkah-langkah:

contoh soal invers fungsi

Diketahui f(x) = x2 – 3x dan g(x) = 2x + 1. Tentukan (f – g)(x).

Jawab:

(f – g)(x) = f(x) – g(x)

(f – g)(x)= x2 – 3x – (2x + 1)

(f – g)(x)= x2 – 3x – 2x – 1

(f – g)(x)= x2 – 5x – 1

Jawaban:

invers fungsi adalah kebalikan dr suatu fungsi. biasanya disimbolkan dg tanda (^-1) pd fungsi yg akan di invers.

Contoh :

Tentukan invers dari :

a. f(x) = x + 2

b. f(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

Jawab :

a. f(x) = x + 2

invers,

f(x) = y

y = x + 2

x = y - 2

f-¹(x) = x - 2

b. f(x) = 3x + 1 / 2x - 3

invers,

f(x) = y

y = 3x + 1 / 2x - 3

y(2x - 3) = 3x + 1

2xy - 3y = 3x + 1

2xy - 3x = 3y + 1

x(2y - 3) = 3y + 1

x = 3y + 1 / 2y - 3

f-¹(x) = 3x + 1 / 2x - 3

c. f(x) = x² - 2x + 1

invers,

f(x) = y

y = x² - 2x + 1

y = (x - 1)²

(x - 1) = √y

x = 1 ± √y

f-¹(x) = 1 ± √x


21. Kak kaka coba dong buatin contoh soal fungsi invers dan pembahasanya


Semoga membantu...... ☺

22. contoh soal invers fungsi​


Jawaban:

Jika f(x) = x – 3 maka f-1(x) = …

A. x – 3

B. 3 – x

C. x + 3

D. x

E. 3

Pembahasan / penyelesaian soal

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = x – 3

y = x – 3

x = y + 3

Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3

Soal ini jawabannya C.

Contoh soal 2

Jika f(x) = 2 – 2x maka f-1(x) = …

A. 1 – 1/2x

B. 1/2 – x

C. 1/2x + 1

D. x + 1

E. x + 2

Penjelasan dengan langkah-langkah:

Misalkan f(x) = y maka diperoleh hasil sebagai berikut:

f(x) = 2 – 2x

y = 2 – 2x

2x = 2 – y

x =

\frac {2 - y} {2}

ganti x = f-1(x) dan y = x sehingga diperoleh f-1(x) =

\frac {2 - x} {2} = 1 – 1/2x

Soal ini jawabannya A.

Contoh soal 3

Jika f(x) = 2x + 1 maka f-1(2) = …

A. 1/2

B. 1

C. 2

D. 3

E. 4

Pembahasan

y = 2x + 1

2x = y – 1

x =

\frac {y - 1} {2}

f-1(x) =

\frac {x - 1} {2}

f-1(2) =

\frac {2 - 1} {2} = 1/2

Soal ini jawabannya A.

mohon maaf kalau salah


23. soal cerita fungsi invers​


Jawab:

Penjelasan dengan langkah-langkah:

komposisi

soal

i)  f(x)= 2x- 1

ii) g(x) =x² - 3x

a. fungsi yang menyatakan jumlah kertas

=  g {f (x)}

= g (2x-1)

= (2x - 1)² - 3 (2x- 1)

=  4x² - 4x + 1 - 6x + 3

= 4x²  - 10x + 4

b) bahan  baku x= 4

banyak kertas = g{f(4)}

= g{2(4 )- 1}

= g(7)

= 7² - 3(7)

= 49 - 21

= 28 satuan


24. aplikasi fungsi invers dalam kehidupan sehari hari?


fungsi invers matematika merupakan materi yang berkaitan dengan fungsi jadi materi prasyarat dalam mempelajari materi ini adalah sudah terlebih dahulu menguasai berbagai macam bentuk fungsi seperti fungsi linier, fungsi kuadrat, fungsi irasional dan sebagainya.

25. Buatlah penjelasan menarik tentang manfaat belajar fungsi komposisi dan invers disertai contoh soal ceritanya dan jawaban​


Fungsi komposisi dan fungsi invers adalah dua jenis fungsi yang harus kamu pahami dengan seksama. Kedua jenis fungsi ini akan memberikan pemahaman yang lebih untuk kamu mempelajari matematika, terutama dalam materi aljabar. Fungsi komposisi dan invers banyak digunakan dalam kehidupan sehari-hari khususnya di bidang produksi. Fungsi komposisi dan fungsi invers juga dapat digunakan dalam ilmu lainnya, seperti fisika, ekonomi, dan lain sebagainya. Fungsi komposisi dan fungsi invers dapat digunakan untuk menyederhanakan perhitungan dan menggambarkan hubungan antara variabel dalam berbagai ilmu pengetahuan.

Berikut ini adalah contoh soal cerita yang penyelesaiannya menggunakan fungsi komposisi:

Seorang pedagang menjual buah apel dengan harga Rp 10.000/kg. Jika setiap hari ia menjual 5 kg apel, maka pendapatan pedagang tersebut setiap hari adalah Rp 50.000. Jika setiap bulan terdapat 30 hari, maka pendapatan pedagang tersebut setiap bulan adalah Rp 1.500.000.

Dalam soal di atas, terdapat dua fungsi yang dapat kita temukan yaitu:

- Fungsi f(x) = 10.000x yang menyatakan hubungan antara jumlah buah apel yang dijual (x) dengan pendapatan pedagang setiap hari.

- Fungsi g(x) = 30x yang menyatakan hubungan antara pendapatan pedagang setiap hari (x) dengan pendapatan pedagang setiap bulan.

Dengan menggunakan fungsi komposisi, kita dapat menemukan hubungan antara jumlah buah apel yang dijual dengan pendapatan pedagang setiap bulan yaitu:

(g o f)(x) = g(f(x)) = g(10.000x) = 30(10.000x) = 300.000x

Jadi, jika pedagang tersebut menjual x kg buah apel setiap hari, maka pendapatan pedagang tersebut setiap bulan adalah Rp 300.000x.


26. contoh soal fungsi invers


1.f(x)=2x-4
2.f(x)=x2-4x+2

27. Contoh soal cerita dan pembahasan tentang fungsi invers


invers adalah kebalikan. Pada sebuah fungsi matematika jika kita ingin mencari salah satu variabel (mis: y) maka kita harus menginverskan fungsi tersebut. Invers juga disebut hukum kaus kaki, karena sama seperti kita membolak balikkan kaus kaki.

carilah invers dari
[tex]f(x) = \frac{3x - 9}{8 - 2x} [/tex]
semoga bermanfaat

28. contoh soal fungsi invers


invers matrik apa invers persamaan gan?

29. tolong buatin contoh masalah pada "Fungsi Invers" dalam kehidupan sehari-hari beserta penyelesaiannya ! secepatnya kalau bisa:)


1.   Proses pembuatan buku diproses melalui 2 tahap yaitu tahap editorial dilanjutkandengan tahap produksi. Pada tahap editorial, naskah diedit dan dilayout sehinggamenjadi file yang siap dicetak. Kemudian, file diolah pada tahap produksi untuk mencetaknya menjadi sebuah buku. Proses pembuatan buku ini menerapkan algoritmafungsi komposisi.  

2.   Untuk mendaur ulang logam, awalnya pecahan logam campuran dihancurkan menjadiserpihan kecil. Drum magnetic pada mesin penghancur menyisihkan logam magneticyang memuat unsure bes. Lalu sisa pecahan logam dikeruk dan dipisahkan, sedangkanserpihan besi dilebur menjadi baja baru. Proses pendaur ulang logam tersebutmenggunakan fungsi komposisi.  

3.   Sebuah lempeng emas yang dapat dibentuk menjadi berbagai perhiasan jugamenerapkan fungsi komposisi. 

 4.   Di bidang ilmu yang lain fungsi komposisi dan inver juga di terapkan seperti:  
a.   Di bidang ekonomi : digunakan untuk menghitung dan memperkirakan sesuatuseperti fungsi permintaan dan penawaran.  
b.   Di bidang kimia : digunakan untuk menentukan waktu peluruhan unsur.  
c.   Di bidang geografi dan sosiologi : digunakan untuk optimasi dalam industry dankepadatan penduduk.  
d.   Dalam ilmu fisika sering digunakan persamaan fungsi kuadrat untuk menjelaskanfenomena gerak.

5.   Dengan menggunakan komposisi warna, pada mesin cetak dapat dihasilkan warnabaru. Pembuatan warna tersebut menerapkan fungsi komposisi.   Ada berbagai masalah dalam kehidupan sehari-hari yang dapat diselesaikan denganmenggunakan fungsi komposisi seperti uraian berikut.  
a.   Harga jual p dari suatu komoditas ekspor hasil hutan dan jumlah terhual x,memenuhi persamaan P = ¼ x + 150 dengan 0 ≤ x ≤1.000  Misalkan biaya C dari produksi per unit adalah Jika kita mempelajari dan memahami fungsi komposisi dengan baik, kita dapatmenentukan biaya C sebagai fungsi dan harga p ketika semua unit yang diproduksiterjual

6.   Penerapan komposisi fungsi juga terdapat dalam permainan sepak bola seperti penyusunan pemain atau formasi pemain dalam tim

30. tolong buatin soal cerita buat invers fungsi dong yg belum di publish ​


Jawab:

diketahui fungsi f(x)=6x-3, g(x)=5x+4, dan (f.g)(a)=81. nilai a=...

Penjelasan dengan langkah-langkah:

f(g(x)) = 6(5x+4)-3

         = 30x+24-3

         = 30x+21

(f.g)(a) = 81

30a+21 = 81

    30a = 81-21

          a = 60/30

          a = 2


31. Contoh soal fungsi invers dan pembahasannya kelas 10 brainly


diketahui

f(x) = 5x+10

ditanya

f invers x..

jawab

y = 5x+10 <---> 5x = y - 10

<---> x = (y-10) / 5

<---> f invers y = (y-10) / 5

maka f invers x = (x-10) / 5

semoga bermanfaat


32. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?


Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51

33. bantu jawab soal matematika fungsi invers kak buat hari ini makasih..​


Jawab:

Penjelasan dengan langkah-langkah:

fungsi invers.

2.

a.

f(x) = 2x² + 5

misal ;

.   y = 2x² + 5

.   2x² = y - 5

.    x² = [tex]\frac{y-5}{2}[/tex]

.     x = [tex]\sqrt{\frac{y-5}{2} }[/tex]

maka inversnya ;

. f⁻¹(x) = [tex]\sqrt{\frac{x-5}{2} }[/tex]

b.

g(x) = [tex]\frac{2x-1}{6}[/tex]

misal ;

y = [tex]\frac{2x-1}{6}[/tex]

6y = 2x - 1

2x = 6y + 1

x = [tex]\frac{6y+1}{2}[/tex]

maka inversnya ;

g⁻¹(x) = [tex]\frac{6x+1}{2}[/tex]

c.

h(x) = [tex]\sqrt[3]{x+2}[/tex]

misal ;

y = [tex]\sqrt[3]{x+2}[/tex]

y³ = x + 2

x = y³ - 2

maka inversnya ;

h⁻¹(x) = x³ - 2

semoga bisa membantu

fungsi invers

f(x) = y = 2x² + 5

2x² = y - 5

x = ± √((y - 5)/2)

f^-1 (x) = ± √((x - 5)/2) → x ≥ 5

••

y = g(x) = (2x - 1)/6

2x - 1 = 6y

2x = (6y + 1)

x = (6y + 1)/2

g^-1 (x) = (6x + 1)/2

•••

y = h(x) = ³√(x + 2)

Kedua ruas pangkatkan 3

y³ = x + 2

x = y³ - 2

h^-1 (x) = x³ - 2


34. contoh soal fungsi invers dan jawabannya


Diketahui f(x) = -(2-3x) /2 , maka f-¹(x) sama dengan....

A. ⅔ (1 + x)
B. ⅔ (1 - x)
C. 3/2 (1 + x)
D. -⅔ (1 + x)
E. -3/2 (x - 1)

Pembahasan :
f(x) = -(2-3x) /2
f(x) = (-2+3x) /2

y = (-2+3x) /2
2y = -2+3x
2y + 2 = 3x
x = (2y+2) /3

Jadii..
f-¹(x) = (2x+2) /3
f-¹(x) = 2(x+1) /3
f-¹(x) = ⅔ (x + 1)...(A)


maav kalau salah

35. soal cerita invers matriks


Pembahasan

Diminta untuk membuat contoh soal invers matriks

Soal

Arman membeli 5 pensil dan 3 penghapus, sedangkan Susi membeli 4 pensil dan 2 penghapus di toko yang sama. Di kasir, Arman membayar Rp 11.500,00 sedangkan Susi membayar Rp 9.000,00. Jika Dodi membeli 6 pensil dan 5 penghapus, berapa ia harus membayar?

Persoalan ini dapat diselesaikan menggunakan dua cara.

Jika [tex]\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}p\\q\\\end{array}\right][/tex] maka dengan cara pertama, yakni cara invers, diperoleh [tex]\boxed{\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \frac{1}{ad-bc}\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]\left[\begin{array}{ccc}p\\q\\\end{array}\right]}[/tex].

Ingat, determinan dari [tex]\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right][/tex] adalah ad - bc.

Penyelesaian cara kedua adalah cara determinan, yaitu:

[tex]x = \frac{\left|\begin{array}{ccc}p&b\\q&d\\\end{array}\right|}{\left|\begin{array}{ccc}a&b\\c&d\\\end{array}\right|}[/tex]

[tex]y = \frac{\left|\begin{array}{ccc}a&p\\c&q\\\end{array}\right|}{\left|\begin{array}{ccc}a&b\\c&d\\\end{array}\right|}[/tex]

Penyelesaian

Dimisalkan harga satuan pensil = x dan harga satuan penghapus = y. Disusun ke dalam sistim persamaan linear dua variabel (SPLDV)

5x + 3y = 11.500

4x + 2y = 9.000

Sistim persamaan di atas dapat dinyatakan dalam bentuk matriks, yakni

[tex]\left[\begin{array}{ccc}5&3\\4&2\\\end{array}\right]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}11.500\\9.000\\\end{array}\right][/tex]

Cara Pertama (Invers Matriks)

[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \frac{1}{(5)(2)-(3)(4)}\left[\begin{array}{ccc}2&-3\\-4&5\\\end{array}\right]\left[\begin{array}{ccc}11.500\\9.000\\\end{array}\right][/tex]

[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \frac{1}{10-12}\left[\begin{array}{ccc}2(11.500)+(-3)(900)\\-4(11.500)+5(9.000)\\\end{array}\right][/tex]  

[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = -\frac{1}{2}\left[\begin{array}{ccc}-4.000\\-1.000\\\end{array}\right][/tex]  

[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}2.000\\500\\\end{array}\right][/tex]  

[tex]\boxed{x = 2.000}[/tex] dan [tex]\boxed{y = 500}[/tex]

Diperoleh harga satuan pensil Rp 2.000 dan harga satuan penghapus Rp 500.Jadi, Dodi harus membayar [6 x Rp 2.000] + [5 x Rp 500] = Rp 14.500-------------------------Cara Kedua (Determinan Matriks)

[tex]x = \frac{\left|\begin{array}{ccc}11.500&3\\9.000&2\\\end{array}\right|}{\left|\begin{array}{ccc}5&3\\4&2\\\end{array}\right|}[/tex]

[tex]x = \frac{(11.500)(2)-(3)(9.000)}{(5)(2)-(3)(4)}[/tex]

[tex]x = \frac{-4.000}{-2}[/tex]

[tex]\boxed{x = 2.000}[/tex]

[tex]y = \frac{\left|\begin{array}{ccc}5&11.500\\4&9.000\\\end{array}\right|}{\left|\begin{array}{ccc}5&3\\4&2\\\end{array}\right|}[/tex]

[tex]y = \frac{(5)(9.000)-(11.500)(4)}{(5)(2)-(3)(4)}[/tex]

[tex]y = \frac{-1.000}{-2}[/tex]

[tex]\boxed{y = 500}[/tex]

Jadi, Dodi harus membayar [6 x Rp 2.000] + [5 x Rp 500] = Rp 14.500.-----------------------

Pelajari soal-soal lain mengenai operasi matriks

brainly.co.id/tugas/13250050

brainly.co.id/tugas/981486

Kasus program linear yang diselesaikan secara matriks

brainly.co.id/tugas/13641649

____________

Kelas         : XI

Mapel        : Matematika

Kategori    : Matriks

Kata Kunci : soal, cerita, variabel, invers, matriks, determinan, harga, satuan, membayar

Kode : 11.2.5 [Kelas 11 Matematika Bab 5 - Matriks]


36. tolong buat contoh-contoh soal tentang fungsi invers beserta pembahasannya


y=f(x)=5x-7
jawab
y=5x-7
5x=y+7
x=y+7/5
x=f^-1(y)=y+7/5
jadi fungsi invers dari y=f(x)=5x-7 adalah f^-1(x)=x+7/5

37. contoh soal invers fungsi?​


Jawaban:

Jika f(x) = 2x – 6 maka f-1(x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1/2x – 3

D. -1/2x + 3

E. x – 12

Pembahasan

Agar dapat menentukan fungsi invers,maka harus dapat menentukan persamaan x-nya dahulu.

f(x) = 2x – 6

2x = f(x) + 6

x = f(x) + 6 / 2 (ubah x menjadi f-1(x) dan f(x) diganti dengan x)

f-1(x) = (x + 6) / 2 = 1/2 x + 3

Jawaban: B


38. berikan contoh soal dan penyelesaian tentang invers dari fungsi dan fungsi komposisi



fungsi komposisi:

1.diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:(f o g)(x) = g dimasukkan ke f menggantikan x(f o g)(x) = 3(2x)-4(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x(g o f)(x) = 2(3x-4)(g o f)(x) = 6x-8



39. contoh soal fungsi operasi aljabar pada fungsi,fungsi komposisi,fungsi invers


soal sbmptn fungsi komposisi invers

40. buatlah 5 contoh soal fungsi invers dan penyelesainnya​


Jawaban:

1. Jika f (x) = 2x – 6, maka f-1 (x) = …

A. 1/2 x – 3

B. 1/2 x + 3

C. -1 / 2x – 3

D. -1 / 2x + 3

E. x – 12

Diskusi

Untuk menentukan fungsi invers, Anda harus terlebih dahulu menentukan persamaan x.

f (x) = 2x – 6

2x = f (x) + 6

x = f (x) + 6/2 (perubahan x ke f-1 (x) dan f (x) digantikan oleh x)

Jawab: B

2. Jika f (x) = 5 – 1 / 3x, maka f-1 (x) = …

A. 3x + 15

B. 3x – 15

C. -3x + 15

D. -3x – 15

E. -3x + 5/3

Diskusi

f (x) = 5-1 / 3x

1 / 3x = 5 – f (x)

x = (5 – f (x)). 3

x = 15 – 3 f (x)

f-1 (x) = -3x + 15

Jawab: C

3. Jika f (x) = (x + 3) / (x – 2), f-1 (x) = …

A. (2x + 3) / (x – 1)

B. (x – 3) / (x + 2)

C. (2x + 3) / (x +1)

D. (-2x + 3) / (x + 1)

E. (-x + 3) / (x – 2)

Diskusi:

Langkah 1:

Biarkan f (x) = y

y. = (x + 3) atau (x – 2)

y (x – 2) = x + 3

yx – 2y = x + 3

yx – x = 2thn + 3

x (y – 1) = 2y + 3

x = (2y + 3) / (y – 1) Kemudian ganti x dengan f-1 (x) dan y dengan x

f-1 (x) = (2x + 3) / (x-1)

Langkah 2:

Jika f (x) = (kapak + b) / (cx + d) Jadif-1 (x) = (-dx + b) / (cx-a))

Kemudian kita bisa bertukar tempat dan mengganti karakter 1 dengan -2.

f-1 (x) = (2x + 3) / (x-1)

Jawab: A

4. Jika f (x) = 2x / (x – 1), maka f-1 (1) = …

A. -1

B. 0

C. 1

D. 2

E. 3

Diskusi

Pertama tentukan f-1 (x)

y = 2x / (x – 1)

y (x – 1) = 2x

yx – y = 2x

yx – 2x = y

x (y – 2) = y

x = y / (y – 2)

f-1 (x) = x / (x – 2)

f-1 ((1)) = 1 / (1-2) = -1

Jawab: A

5. Invers didefinisikan sebagai f (x) = (x – 3) / (2x + 5), x ≠ – 5/2 dan f-1 (x) adalah kebalikan dari fungsi f (x). Rumus f-1 (x) adalah …

A. (5x + 3) / (1 – 2x)

B. (5x – 3) / (1 – 2x)

C. (5x + 3) / (2x + 1)

D. (2x + 3) / (5x + 5)

E. (2x – 3) / (5x + 5)

Diskusi

f (x) = (x – 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:

f – 0,1 (x) = (-dx + b) / (cx – a)

f-1 (x) = (-5x – 3) / (2x -1) atau pembilang dan penyebut – (min)

f-1 (x) = (5x + 3) / (-2x + 1)

f-1 (x) = (5x + 3) / (1 – 2x)

Jawab: A

6. Diberikan f (x) = (5x – 5) / (x – 5), kebalikan dari fungsi f (x) f-1 (x) = …

A. (x – 5) / (5x – 5)

B. (x + 5) / (5x – 5)

C. (5x-1) / (5x-5)

D. (5x-5) / (x-5)

E. (5x – 5) / (x + 5)


Video Terkait

Kategori matematika