Contoh soal pilihan ganda dengan jawabannya tentang komposisi seni budaya
1. Contoh soal pilihan ganda dengan jawabannya tentang komposisi seni budaya
Jawaban:
mana soalnya kakak aku gak mengerti
#backtoschool2019
2. contoh soal tentang fungsi komposisi fungsi dan fungsi linear
semoga bisa membantu
3. berikan contoh soal dari fungsi komposisi
Diketahui :
f(x) = 5x + 2
g(x) = 8x + 10
berapakah nilai dari :
1) fog(x)
2) gof(x)
4. tolong bantu aku . tugas projek matematika contoh soal dan jawaban penerapan fungsi komposisi pada kehidupan sehari2 . mohon gan
fungsi komposisi untuk mengetahui beratnya suatu benda
5. Buatlah penjelasan menarik tentang manfaat belajar fungsi komposisi dan invers disertai contoh soal ceritanya dan jawaban
Fungsi komposisi dan fungsi invers adalah dua jenis fungsi yang harus kamu pahami dengan seksama. Kedua jenis fungsi ini akan memberikan pemahaman yang lebih untuk kamu mempelajari matematika, terutama dalam materi aljabar. Fungsi komposisi dan invers banyak digunakan dalam kehidupan sehari-hari khususnya di bidang produksi. Fungsi komposisi dan fungsi invers juga dapat digunakan dalam ilmu lainnya, seperti fisika, ekonomi, dan lain sebagainya. Fungsi komposisi dan fungsi invers dapat digunakan untuk menyederhanakan perhitungan dan menggambarkan hubungan antara variabel dalam berbagai ilmu pengetahuan.
Berikut ini adalah contoh soal cerita yang penyelesaiannya menggunakan fungsi komposisi:
Seorang pedagang menjual buah apel dengan harga Rp 10.000/kg. Jika setiap hari ia menjual 5 kg apel, maka pendapatan pedagang tersebut setiap hari adalah Rp 50.000. Jika setiap bulan terdapat 30 hari, maka pendapatan pedagang tersebut setiap bulan adalah Rp 1.500.000.
Dalam soal di atas, terdapat dua fungsi yang dapat kita temukan yaitu:
- Fungsi f(x) = 10.000x yang menyatakan hubungan antara jumlah buah apel yang dijual (x) dengan pendapatan pedagang setiap hari.
- Fungsi g(x) = 30x yang menyatakan hubungan antara pendapatan pedagang setiap hari (x) dengan pendapatan pedagang setiap bulan.
Dengan menggunakan fungsi komposisi, kita dapat menemukan hubungan antara jumlah buah apel yang dijual dengan pendapatan pedagang setiap bulan yaitu:
(g o f)(x) = g(f(x)) = g(10.000x) = 30(10.000x) = 300.000x
Jadi, jika pedagang tersebut menjual x kg buah apel setiap hari, maka pendapatan pedagang tersebut setiap bulan adalah Rp 300.000x.
6. Tolong buatkan contoh soal fungsi komposisi yang paling mudah
Diketahui :
F(x) = 5x-4
G(x) = 2x+12
Tentukan :
a) (FoG) (x)
b) (GoF) (x)
7. soal fungsi komposisi
a) (gof) (x) = x² + 3x - 11
g(f(x)) = x² + 3x - 11
g(x² + 3x - 5) = x² + 3x - 11
misal: x² + 3x - 5 = a
x² + 3x - 5 - 6 = a - 6
x² + 3x - 11 = a - 6
g(a) = a - 6
g(x) = x - 6
b) (gof)(x) = 3x² - 6x + 7
g(f(x)) = 3x² - 6x + 7
g(x² - 2x + 1) = 3x² - 6x + 7
misal: x² - 2x + 1 = m -- kedua ruas dikali 3
3x² - 6x + 2 = 2m
3x² - 6x + 2 + 5 = 2m + 5
3x² - 6x + 7 = 2m + 5
g(m) = 2m + 5
g(x) = 2x + 5
semoga membantu ya :)
8. Mohon bantuannya Ini soal mtk tentang fungsi komposisi & invers
Jawaban:
f(x) + g(x) = 2x² + 2x - 3
Penjelasan dengan langkah-langkah:
f(x) = 2x² + x - 5
g(x) = x + 2
f(x) + g(x) = 2x² + x - 5 + x + 2
f(x) + g(x) = 2x² + 2x - 3
semoga jawabannya membantu
9. fungsi komposisi dan contohnya
Jawaban:
Fungsi komposisi adalah sebuah operasi pada 2 fungsi atau lebih untuk menghasilkan sebuah fungsi yang baru. Fungsi komposisi menggunakan notasi 'o'. Contohnya jika fungsi f(x) dan g(x), maka (f o g) (x) dibaca fungsi f bundaran g yang dikerjakan dengan cara memasukkan fungsi g ke dalam fungsi f.
Penjelasan dengan langkah-langkah:
Maaf Kalau Salah:)
10. nabila mempunyai satu paket soal berisi 20 soal pilihan ganda dan 20 soal isian.ia mendapat tugaa mengerjakan 28 soal dengan ketentuan setiap jenis soal paling sediki dikerjakan 10 buah.banyak kemungkinan komposisi jenis soal yang dikerjakan nabila adalah?
misal a = banyak soal pilihan ganda, b = banyak soal isian
a + b = 28, untuk a,b ≥ 10, a,b bil-bulat
jika a = 10 ---> maka b = 18
jika a = 11 ---> maka b = 17
jika a = 12 ---> maka b = 16
jika a = 13 ---> maka b = 15
jika a = 14 ---> maka b = 14
jika a = 15 ---> maka b = 13
jika a = 16 ---> maka b = 12
jika a = 17 ---> maka b = 11
jika a = 18 ---> maka b = 10
jadi, banyak kemungkinan komposisi soal = 9 cara
11. Berikan contoh soal berserta jawabannya Fungsi Komposisi (fog)(x) dan (gof)(x)
Jawab:
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
f(x) = 3x + 2
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x
a) (f o g)(x)
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f)(x)
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
Jawaban:
Berikan contoh soal berserta jawabannya
Fungsi Komposisi (fog)(x) dan (gof)(x)
JAWABAN ADA DI GAMBAR YA:))
12. D. SOAL PILIHAN GANDAPilihlah A, B, C dan Djawaban yang paling tepat!1. Perubahan jumlah penduduk pada suatu wilayah disebut.A DemografiB. Komposisi pendudukC. Dinamika pendudukD. Kualitas pendudukPENDAMPINGIPS KELAS 7 SEMESTER GANJIL
Jawaban:
B. Komposisi penduduk
Maaf kalo salah
13. Soal komposisi 3 fungsi
.............................
14. buatlah contoh soal fungsi komposisi dari sifat asosiatif dan sifat identitas dengan cara... matamatika wajib)
Jawaban:
Fungsi Komposisi adalah penggabungan operasi dari dua fungsi secara berurutan sehingga menghasilkan sebuah fungsi yang baru. Operasi fungsi komposisi biasa dilambangkan dengan "o" dan dibaca komposisi/bundaran. Untuk memahami fungsi komposisi, simaklah penjelasan berikut.
Misalkan diketahui A = {a1, a2, a3}, B = {b1, b2, b3, b4}, dan C = {c1, c2, c3}, maka fungsi f : A → B dan g : B → C dapat didefinisikan dalam diagram panah di bawah ini.
Dari kedua diagram di atas, dapat ditentukan fungsi yang memetakan secara langsung dari A ke C. Hal ini dapat digambarkan dalam diagram berikut.
Dari, diagram di atas diperoleh
f(a1) = b2 dan g(b2) = c2 sehingga (g o f) (a1) = c2
f(a2) = b1 dan g(b1) = c1 sehingga (g o f) (a2) = c1
f(a3) = b3dan g(b3) = c3 sehingga (g o f) (a3) = c3
Jika fungsi yang langsung memetakan A ke C tersebut dianggap fungsi tunggal, yang dapat dinyatakan dalam sebagai berikut.
(g o f) (a1) = c2
(g o f) (a2) = c1
(g o f) (a3) = c3
Fungsi tunggal tersebut merupakan fungsi komposisi dan dilambangkan dengan g o f dibaca "fungsi g bundaran f". Fungsi g o f adalah fungsi komposisi dengan f yang dikerjakan terlebih dahulu kemudian dilanjutkan dengan g. Sedangkan, untuk f o g "dibaca fungsi f bundaran g". Jadi, f o g adalah fungsi komposisi dengan g dikerjakan terlebih dahulu daripada f. Fungsi komposisi yang melibatkan fungsi f dan g dapat ditulis:
(g o f)(x) = g(f(x))
(f o g)(x) = f(g(x))
Penjelasan:
semoga membantu
15. soal latihan materi: fungsi invers dan fungsi komposisi, tolong bantu :)
Jawab:
Penjelasan dengan langkah-langkah:
soal 1a
f(x)= 2x + 5
2x= f(x) - 5
x= ¹/₂ [ f(x) - 5 ]
f⁻¹(x)= ¹/₂ (x - 5 )
soal 2a
f(x) = x² - 4x + 2
x²- 4x = f(x) - 2
(x - 2)² = f(x) -2 + 4
(x - 2)² = f(x) + 2
[tex]\sf (x-2) = \pm \sqrt{f(x) + 2}\\\\x = 2 \pm \sqrt{f(x) + 2}\\\\f^{-1}(x) = 2 \pm \sqrt{x+2}[/tex]
soal 2a
fog(x) = f{ g(x)}
= f {2x+5}
= 2x+5 - 3
(fog)(x) = 2x + 2
gof(x) = g{ f(x)}
= g { f(x)}
= g {x- 3}
= 2 (x-3) + 5
=2x -6 + 5
(gof)(x) = 2x - 1
soal2b
fog(x) = 2x+ 2
(fog)⁻¹(x)= ¹/₂ ( x- 2)
gof(x)= 2x- 1
(gof)⁻¹(x)= ¹/₂ (x + 1)
16. contoh cerita dalam bentuk soal fungsi komposisi kelas XI
Contoh cerita dalam bentuk soal fungsi komposisi kelas XI
1.sebutkan teknik teknik mengambar gambar dekoratif???
2.berapakah 850 mg=........gr
3.mean dari data : 6,7,y,4,7,8,5,8,6,8,8,6 adalah 6,5.tentukan : a.nilai y b.mediannya
4.nilai rata rata ulangan mtk sekelompok siswa adalah 63 siswa.jika ditambah 1 orang bagi yang memiliki nilai 80.maka nilai rata rata menjadi 6,4.berapakah banyak siswa pada kelompok semula ?
17. tugas mtkbuatlah 5 soal fungsi komposisi
Jawab:
Penjelasan dengan langkah-langkah:
2017
1. Diketahui jika adalah invers dari f, maka = ...
a. 2/3 (1 + x)
b. 2/3 (1 – x)
c. 3/2 (1 + x)
d. – 3/2 (x – 1)
e. – 2/3 (x + 1)
PEMBAHASAN:
Ingat rumus ini ya: jika , maka:
JAWABAN: A
2. Diketahui fungsi f(x) = 2x + 3 dan g(x) = x2 – 2x + 4. Komposisi fungsi (g o f)(x) adalah ...
PEMBAHASAN:
(g o f)(x) = g(f(x))
= g(2x + 3)
JAWABAN: C
3. Diketahui f(x) = x + 4 dan g(x) = 2x maka = ...
a. 2x + 8
b. 2x + 4
c. ½ x – 8
d. ½ x – 4
e. ½ x – 2
PEMBAHASAN:
(f o g)(x) = f(g(x))
= f(2x)
= 2x + 4
Kita cari invers dari (f o g)(x) yaitu:
(f o g)(x) = 2x + 4
y = 2x + 4
2x = y – 4
x = (y-4)/2
x = ½ y – 2
maka, = ½ x – 2
JAWABAN: E
4. Fungsi f ditentukan , x ≠ 3, jika invers dari f maka (x + 1) = ...
PEMBAHASAN:
Ingat lagi ya, jika
Sehingga:
JAWABAN: D
5. Diketahui , dan adalah invers dari f, maka (x) = ...
PEMBAHASAN:
Kita gunakan rumus: jika
JAWABAN: B
6. Diketahui f(x) = 2x + 5 dan , x ≠ -5 maka (f o g)(x) = ...
PEMBAHASAN:
JAWABAN: D
7. Invers dari fungsi , x ≠ 4/3 adalah(x) = ...
PEMBAHASAN:
Rumusnya: jika
JAWABAN: A
8. Diketahui fungsi f(x) = 3x – 1 dan . Nilai dari komposisi fungsi (g o f)(1) = ...
a. 7
b. 9
c. 11
d. 14
e. 17
PEMBAHASAN:
(g o f)(x) = g(f(x))
= g(3x – 1)
JAWABAN: C
9. Jika dan f-1 invers dari f, maka (x) = -4 untuk nilai x sama dengan ...
a. -2
b. 2
c. – ½
d. -3
e. – 1/3
PEMBAHASAN:
Kita pakai rumus: jika
-2x + 1 = -4x
-2x + 4x= -1
2x = -1
x = - ½
JAWABAN: C
10. Jika g(x) = x + 1 dan maka f(x) = ...
PEMBAHASAN:
JAWABAN: B
11. Diketahui , x ≠ 5/6 dan fungsi invers dari f(x) adalah (x). Nilai dari (2) = ...
a. 14/3
b. 17/14
c. 6/21
d. – 17/14
e. – 14/3
PEMBAHASAN:
Kita pakai rumus: jika
JAWABAN: C
12. Diketahui:
, dengan x ≥ -4 dan x ∊ R. Fungsi komposisi (g o f)(x) adalah ...
a. 2x – 4
b. x – 2
c. x + 2
d. x
e. 2x
PEMBAHASAN:
JAWABAN: D
13. Jika dan adalah invers dari f, maka (x + 1) = ...
PEMBAHASAN:
Kita pakai rumus: jika
JAWABAN: A
14. Diketahui f : R --> R dan g : R --> R, didefinisikan dengan dan g(x) = 2 sin x. Nilai (f o g)(- ½ π) adalah ...
a. -4
b. 2
c. 3
d. 6
e. 12
PEMBAHASAN:
(f o g)(x) = f(g(x))
= f(2 sin x)
JAWABAN: A
15. Suatu pemetaan f : R --> R, g : R --> R dengan dan g(x) = 2x + 3 maka f(x) = ...
PEMBAHASAN:
JAWABAN: A
16. Diketahui f : x --> x + 2 dan h : x --> x^2 – 2. Jika maka g(x) = ...
a. 2x + 3
b. 2x + 6
c. 2x + 9
d. x + 5
e. x – 3
PEMBAHASAN:
JAWABAN: B
17. Jika dan g(x) = 2x + 4 maka (x) = ...
PEMBAHASAN:
Untuk mencari inversnya, kita gunakan rumus:
JAWABAN: E
18. Jika maka fungsi g adalah g(x) = ...
a. 2x – 1
b. 2x – 3
c. 4x – 5
d. 4x – 3
e. 5x – 4
PEMBAHASAN:
g(x) + 1 = 4(x – 1)
g(x) = 4x – 4 – 1
g(x) = 4x – 5
JAWABAN: C
19. Fungsi f : R--> R dan g : R --> R ditentukan oleh f(x) = 2x + 5 dan g(x) = x + 2 maka memetakan x ke ...
PEMBAHASAN:
(f o g)(x) = f(g(x))
= f(x + 2)
= 2 (x + 2) + 5
= 2x + 4 + 5
= 2x + 9
(f o g)(x) = 2x + 9
y = 2x + 9
2x = y – 9
x = (y - 9)/2
= (x - 9)/2
JAWABAN: E
20. Jika f(x) = √x + 3 maka (x) = ...
PEMBAHASAN:
f(x) = √x + 3
y = √x + 3
y – 3 = √x
JAWABAN: C
21. Diketahui untuk setiap bilangan real x ≠ 0. Jika g : R --> R adalah suatu fungsi sehingga (g o f)(x) = g(f(x)) = 2x + 1 maka fungsi invers g-1(x) = ...
PEMBAHASAN:
Maka:
JAWABAN: D
22. Diketahui , x ≠ - ¼ . Jika adalah invers f, maka(x – 2) = ...
PEMBAHASAN:
Kita pakai rumus: jika
JAWABAN: A
23. Invers dari adalah ...
PEMBAHASAN:
JAWABAN: D
24. Jika , maka daerah asal dari (g o f)(x) adalah ...
a. x ≥ 8
b. -8 ≤ x ≤ 8
c. x ≥ 5
d. -5 ≤ x ≤ 5
e. 5 ≤ x ≤ 8 atau x > 8
PEMBAHASAN:
Sehingga daerah asal dari (g o f)(x) adalah:
Dari (i) dan (ii) diperoleh:
5 ≤ x < 8 atau x > 8
JAWABAN: E
25. Diberikan fungsi f dan g dengan f(x) = 2x + 1 dan , x ≠ 1 maka invers dari fungsi g adalah g-1(x) = ...
18. soal fungsi komposisibantu jawab pakai cara
Jawaban:
[tex](fog)(x) = f(g(x))= 2( \frac{x + 4}{x - 1} ) - 5 \\ f(g(2)) = 2( \frac{2 + 4}{2 - 1} ) - 5 \\ = 2 (\frac{6}{1} ) - 5 \\ = 2(6) - 5 \\ = 12 - 5 = 7[/tex]
19. contoh soal komposisi fungsi jika g(x) = 5x + 3, dan (fog)(x) = 10x + 7. maka f(x) nya adalah?..
Kelas 10 Matematika
Bab Fungsi Komposisi
(fog) (x) = 10x + 7
f(5x + 3) = 2 (5x + 3) + 1
f(x) = 2x + 1
20. tolongg bantu soal di bawah mengenai "fungsi komposisi" bserta contohnya.
kayu, plastik maaf kalau gk salah
21. berikan contoh soal fungsi komposisi
f(x) = 2x-4 , g(x) = x²+2
(gof)(3)???
22. Berikan contoh soal menentukan invers dari fungsi komposisiMhon di jwab
Jawaban:
jika f(x) = 3× + 2 dan g(x) = 4×2.maka ( f o g) (x) dan (g o f) (x) adalah...
maaf kalo salah
23. tuliskan 2 contoh dari fungsi komposisi dan fungsi invers tolong di bantu
Penjelasan dengan langkah-langkah:
komposisi :
1. Jika (f o g)(x) = x² + 3x + 4 dan g(x) = 4x – 5. Berapakah nilai dari f(3)?
=> (f o g)(x) = x² + 3x + 4
f (g(x)) = x² + 3x + 4
g(x) = 3 maka,
4x – 5 = 3
4x = 8
x = 2
Karena f (g(x)) = x² + 3x + 4 dan untuk g(x) = 3 didapat x = 2
Sehingga : f (3) = 2² + 3 . 2 + 4 = 4 + 6 + 4 = 14
2. Diketahui f(x) = 2x dan g(x) = x-3. Tentukan (g o f)(x).
=> (g o f)(x) = g(f(x))
(g o f)(x) = g(2x)
(g o f)(x) = (2x) - 3
(g o f)(x) = 2x - 3
invers :
1. Tentukan fungsi invers dari f(x) = x – 3 maka f-1(x)!
=> f(x) = x – 3
y = x – 3
x = y + 3
Ganti x menjadi f-1(x) dan y menjadi x sehingga diperoleh hasil f-1 (x) = x + 3
2. Tentukan fungsi invers dari f(x) = x2 – 4!
> y = x2 – 4
x2 = y + 4
x = √ y + 4
f-1(x) = √ x + 4
semoga membantu
24. contoh soal fungsi komposisi dalam kehidupan sehari-hari beserta jawaban
Jawaban:
1. Jika f(x) = 3x + 2 dan g(x) = 4x2 . Maka (f o g)(x) dan (g o f)(x) adalah …
Pembahasan
(f o g)(x) = f (g(x))
(f o g)(x) = f (4x2)
(f o g)(x) = 3(4x2) + 2
(f o g)(x) = 12x2 + 2
(g o f)(x) = g(f(x))
(g o f)(x) = 4(3x + 2)2
(g o f)(x) = 4(9x2 + 12x + 4)
(g o f)(x) = 36x2 + 48x + 16
Jadi, (f o g)(x) = 12x2 + 2 dan (g o f)(x) = 36x2 + 48x + 16.
2. Diketahui (f o g)(x) = 2x + 4 dan f(x) =x – 2. Tentukan fungsi g (x)!
Pembahasan
(f o g)(x) = 2x + 4
f(g(x)) = 2x + 4
g(x) – 2 = 2x + 4
g(x) = 2x + 4 + 2
g(x) = 2x + 6
Jadi, fungsi g (x) adalah g(x) = 2x + 6.
Penjelasan dengan langkah-langkah:
Semoga membantu
25. latihan soal matematika fungsi komposisi
1. f(x)= x - 4
f(x²) - { f(x)}² +3.f(x) =
= x²-4 - (x-4)² + 3(x-4)
= x² - 4 -(x² -8x +16) + 3x -12
= x² -4 - x² + 8x - 16 + 3x - 12
= 11 x - 32
untuk x = -2 --> 11(-2) - 32 = - 54
2. g(x) = 2x+ 3
g⁻¹(x) = (x - 3)/2
fog(x) = 12x² + 32x + 26
f(x) = fogog⁻¹ = 12{(x-3)/2}² + 32(x -3)/2 + 26
f(x) = 12 { 1/4 (x² -6x + 9)} + 16(x-3) + 26
f(x) = 3x² - 18x + 27 + 16x - 48 + 26
f(x)= 3x² - 2x + 5
3> f(x) = 2x² - 3x + 1
g(x) = x-1
fog(x) = 0
2(x-1)² -3(x-1) + 1 = 0
2(x²-2x +1) - 3x + 3 + 1= 0
2x² - 4x + 2 - 3x + 3 + 1 =0
2x² - 7x + 6 =0
(2x - 3)(x- 2) = 0
x = 3/2 atau x = 2
26. Mohon bantuannya ya soal mtk tentang komposisi fungsi...
Jawaban:
A.
Penjelasan dengan langkah-langkah:
maaaf kallo salahhhj
27. Contoh invers fungsi komposisi
fog^1(x)= 2x + 3
f(x)= x + 1
g(x)= ...?
28. contoh soal dan penyelesaiannya dengan mater komposisi fungsi dan invers fungsi?
Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3) Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51
29. contoh 2 buah soal tentang fungsi komposisi?
Diketahui fungsi F(0)= 3 F(1)= -2 F(2)= 4 F(3)= -2 Dan nilai (fog)(x) dari (fog)(u)=0 (fog)(v)=1 (fog)(w)=3 (fog)(a)=2 Tentukan g(x) untuk x=u,v,w,aIni soal sama jawaban, tapi invers
30. sebutkan soal essay komposisi 3 fungsi
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
f(x) = 3x + 2
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x
a) (f o g)(x)
"Masukkan g(x) nya ke f(x)"
sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f)(x)
"Masukkan f (x) nya ke g (x)"
sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
maaf ya kalau salah
31. 5 Contoh dan pembahasan soal transformasi komposisi
Itu mas jawabannya ttransformasi geometry
32. tolong dibantu dengan cara untuk soal fungsi komposisi
Jawab:
Penjelasan dengan langkah-langkah:
33. contoh soal dan jawaban fungsi komposisi
Pendahuluan
Fungsi komposisi adalah penggabungan dua atau lebih fungsi sehingga terbentuk suatu fungsi baru. Fungsi komposisi dituliskan dengan "(f o g)(x)" dimana "o" dibaca bundaran. Jadi, "(f o g)(x)" dibaca f bundaran g.
[tex]~[/tex]
Sifat sifat fungsi komposisi:
Tidak berlaku sifat komutatif(f o g)(x) ≠ (g o f)(x)
Berlaku sifat asosiatif(f o (g o h))(x) = ((f o g) o h)(x)
Jika fungsi identitas(f o I)(x) = (I o f)(x) = f(x)
[tex]~[/tex]
Pembahasan SoalContoh soal dan jawaban fungsi komposisi:
[tex]~[/tex]
Soal:
Diketahui f(x) = 3x + 2 dan g(x) = -x. Tentukan (f o g)(x)!
[tex]~[/tex]
Jawaban:
f(x) = 3x + 2
g(x) = -x
(f o g)(x) = ?
[tex]~[/tex]
(f o g)(x)
f(g(x))
3(-x) + 2
-3x + 2
2 - 3x
[tex]~[/tex]
Pelajari Lebih LanjutContoh soal fungsi komposisi: brainly.co.id/tugas/8221974Contoh soal fungsi komposisi: brainly.co.id/tugas/10462734Contoh soal fungsi komposisi: brainly.co.id/tugas/12114752[tex]~[/tex]
Detail JawabanMapel: MatematikaKelas: 10 (1 SMA)Materi: FungsiKode Soal: 2Kode Kategorisasi: 10.2.334. contoh soal cerita dan pembahasannya tentang fungsi komposisi
ada dilampiran yah, liat aja
35. soal fungsi komposisi dan fungsi invers
ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers
36. 3 contoh kehidupan sehari hari tentang fungsi dan komposisi fungsi
Penerapan Komposisi Fungsi Dan Fungsi Invers Dalam kehidupan Sehari-hari
1. Proses pembuatan buku diproses melalui 2 tahap yaitu tahap editorial dilanjutkandengan tahap produksi. Pada tahap editorial, naskah diedit dan dilayout sehinggamenjadi file yang siap dicetak. Kemudian, file diolah pada tahap produksi untuk mencetaknya menjadi sebuah buku. Proses pembuatan buku ini menerapkan algoritmafungsi komposisi.
2. Untuk mendaur ulang logam, awalnya pecahan logam campuran dihancurkan menjadiserpihan kecil. Drum magnetic pada mesin penghancur menyisihkan logam magneticyang memuat unsure bes. Lalu sisa pecahan logam dikeruk dan dipisahkan, sedangkanserpihan besi dilebur menjadi baja baru. Proses pendaur ulang logam tersebutmenggunakan fungsi komposisi.
3. Sebuah lempeng emas yang dapat dibentuk menjadi berbagai perhiasan jugamenerapkan fungsi komposisi.
4. Di bidang ilmu yang lain fungsi komposisi dan inver juga di terapkan seperti:
a. Di bidang ekonomi : digunakan untuk menghitung dan memperkirakan sesuatuseperti fungsi permintaan dan penawaran.
b. Di bidang kimia : digunakan untuk menentukan waktu peluruhan unsur.
c. Di bidang geografi dan sosiologi : digunakan untuk optimasi dalam industry dankepadatan penduduk.
d. Dalam ilmu fisika sering digunakan persamaan fungsi kuadrat untuk menjelaskanfenomena gerak.
5. Dengan menggunakan komposisi warna, pada mesin cetak dapat dihasilkan warnabaru. Pembuatan warna tersebut menerapkan fungsi komposisi. Ada berbagai masalah dalam kehidupan sehari-hari yang dapat diselesaikan denganmenggunakan fungsi komposisi seperti uraian berikut.
a. Harga jual p dari suatu komoditas ekspor hasil hutan dan jumlah terhual x,memenuhi persamaan P = ¼ x + 150 dengan 0 ≤ x ≤1.000 Misalkan biaya C dari produksi per unit adalah Jika kita mempelajari dan memahami fungsi komposisi dengan baik, kita dapatmenentukan biaya C sebagai fungsi dan harga p ketika semua unit yang diproduksiterjual
6. Penerapan komposisi fungsi juga terdapat dalam permainan sepak bola seperti penyusunan pemain atau formasi pemain dalam tim
37. Soal Dan Jawaban Komposisi Fungsi
Jawaban:
Fungsi komposisi adalah sebuah operasi pada 2 fungsi atau lebih untuk menghasilkan sebuah fungsi yang baru.
Fungsi komposisi menggunakan notasi ‘o’. Contohnya jika fungsi f(x) dan g(x), maka (f o g) (x) dibaca fungsi f bundaran g yang dikerjakan dengan cara memasukkan fungsi g ke dalam fungsi f.
Penjelasan dengan langkah-langkah:
correct me if im wrong
38. Kaa bantu jawab sekarang soal matematika fungsi komposisi
Penjelasan dengan langkah-langkah:
Dik: f(x) = -2x + 4
g(x) = x^2 - 3x
Dit : f ° g(x) = ?
Jawab:
[tex]f \circ \: g(x) = f(g(x)) \\ = - 2 \cdot \: g(x) + 4 \\ \: \: \: \: = - 2( {x}^{2} - 3x) + 4 \\ = - 2 {x}^{2} + 6x + 4[/tex]
Semoga bermanfaat.
39. Tolong dibantu ya ini soal komposisi fungsi
[tex]f(x) = \frac{x + 6}{3x - 2} \\ g(x) = 2x + 4 \\ (f \: o \: g)( - 1) = f(g( - 1)) \\ = f(2( - 1) + 4) \\ = f( - 2 + 4) \\ = f(2) \\ = \frac{2 + 6}{3(2) - 2} \\ = \frac{8}{6 - 2} \\ = \frac{8}{4} = 2[/tex]
40. contoh soal komposisi fungsi jika g(x) = 5x + 3, dan (fog)(x) = 10x + 7. maka f(x) nya adalah?..
Semoga membantu yah....